IOCAS-IR  > 海洋环境腐蚀与与生物污损重点实验室
光电化学及摩擦纳米发电对304不锈钢的腐蚀防护研究
南有博
Subtype硕士
Thesis Advisor王秀通
2020-05-12
Degree Grantor中国科学院大学
Place of Conferral中国科学院海洋研究所
Degree Name工程硕士
Degree Discipline环境工程
Keyword光生阴极保护,摩擦纳米发电机,二氧化钛,pdms,304不锈钢
Abstract

金属腐蚀不仅是限制其自身发展的短板,而且会直接间接地造成能源浪费、资源浪费、经济损失及安全等许多问题。光生阴极保护技术和摩擦纳米发电阴极保护技术作为新型的腐蚀防护手段,其具有巨大的应用潜力。随着研究的不断推进,这两种技术也暴露出了不少科学问题。本文根据光生阴极保护及摩擦纳米发电阴极保护暴露出的科学问题,设计了以Ni3S2/TiO2Ni2P/TiO2纳米结构材料为光电材料的两个光生阴极保护系统,并研究了其光生阴极保护效应。随后又以聚二甲基硅氧烷(PDMS)为基础材料通过拓扑修饰及微纳米结构的构建设计了PDMS-AlPDMS/CS-AlPDMS/CSr-Al三种不同的摩擦纳米发电机(TENG),而且选择了电输出性能较优的PDMS/CSr-Al TENG在模拟外界机械力的驱动下组装了阴极保护系统,并对其阴极保护性能及应用潜质进行了评价。本文具体内容及结论如下:

1)首先采用阳极氧化法在Ti箔上制备了中空结构TiO2纳米管有序阵列。而后,借助水热法在中空结构的TiO2纳米管上构建Ni3S2/TiO2 II异质结形成Ni3S2纳米片负载TiO2纳米管的三维形态。通过分析其形貌特征、光吸收性、半导体光电性能及阴极保护效果,发现Ni3S2/TiO2一定程度上可提升其光吸收性能、促进光生电子的快速转移、增加光生电子的产率、增强整体的导电率及拉升二氧化钛的费米能级,进而促使更多有效的光生电子转移至304不锈钢(304ss)形成阴极极化保护。

2采用水热法在TiO2纳米管上构建呈棒状纳米颗粒同纳米管结合的Ni2P/TiO2 II异质结。同样,分析其形貌特征、光吸收性、半导体光电性能及阴极保护效果,发现棒状纳米颗粒Ni2PTiO2纳米管结合具有结构与性能上的优势,其也可以提升其光吸收性能、促进光生电子的快速转移、增加光生电子的产率,表现出了优异的光电性能,故也表现出了良好的光生阴极保护效果。

3在蓝色能源的概念基础上充分结合摩擦纳米发电和阴极保护技术,力求开发利用新能源和拓展新的腐蚀防护技术。主要以PDMS为基础构建了PDMS-AlPDMS/CS-AlPDMS/CSr-Al三种垂直分离式摩擦纳米发电机,其中PDMS/CSr-Al TENGPDMS/CSr膜独特的空洞状微纳米结构,表现出了优异的电输出性能。发现其在5 Hz模拟机械力的作用下输出开路电压峰值最高可达77.1 V,短路电流峰值可达33.9 mV/m2。该摩擦纳米发电机可驱动450个商业LED正常工作。在模拟机械外力的情况下组建摩擦纳米发电阴极保护系统,发现该保护系统可以降低304ss表面电位,对其形成阴极极化保护,呈现出了优异的应用潜力。

Other Abstract

Metal corrosion is not only a shortcoming that limits its own development, but also directly and indirectly causes many problems such as waste of energy, waste of resources, economic loss, and safety. As a new type of corrosion protection method, photocathodic protection technology and triboelectric nanogeneration cathodic protection technology have huge application potential. As the research continues to advance, these two technologies have exposed many scientific problems. ln this dissertation, two photocathodic protection systems using Ni3S2/TiO2 and Ni2P/TiO2 nanostructure materials as photoanodes were first designed, and the effect of cathodic protection was studied. Three different triboelectric nanogenerators, PDMS-Al, PDMS/CS-Al and PDMS/CSr-Al, were designed through topology modification and construction of micro-nano structures based on PDMS. Furthermore, a PDMS/CSr-Al triboelectric nanogenerator with superior electrical output performance was selected to assemble a cathodic protection system under the driving of simulated external mechanical forces, and evaluated its cathodic protection performance and application potential. The specific content and conclusions of this dissertation are as follows:

(1) First, an anodizing method was used to prepare an ordered array of TiO2 nanotubes with high specific surface area and a unique hollow structure with one-dimensional orientation on a titanium substrate. Then, a three-dimensional morphology of Ni3S2 nanosheet-supported TiO2 nanotubes was formed on the hollow structured TiO2 nanotubes by means of hydrothermal method. By analyzing the topography, light absorbing, semiconductor optoelectronic properties and cathodic protection effectit was found that Ni3S2/TiO2 can improve its light absorption performance, promote the rapid transfer of photo-generated electrons, increase the yield of photo-generated electrons, and enhance the overall the electrical conductivity and the Fermi energy of TiO2, which promotes the transfer of more effective photo-generated electrons to 304 stainless steel to form cathodic polarization protection.

(2) A Ni2P/TiO2 type II heterojunction in which rod-shaped nanoparticles and nanotubes are combined on the TiO2 nanotubes is constructed by hydrothermal method. Similarly, by analyzing its topography, light absorption, semiconductor optoelectronic properties, and cathodic protection effects, it was found that the combination of rod-shaped nanoparticles Ni2P and TiO2 nanotubes has structural and performance advantages, which can also improve their light absorption performance and promote photo-generated electrons quickly transfer and increase the yield of photo-generated electrons. This shows excellent optoelectronic properties and therefore also shows good photocathodic protection effects.

(3) Based on the concept of blue energy, it fully combines the triboelectric nanogenerator and cathodic protection technology, and strives to develop and utilize new energy and expand new corrosion protection technologies. Based on PDMS, PDMS-Al, PDMS/CS-Al and PDMS/CSr-Al three types of vertical separation triboelectric nanogenerators are constructed. The hollow micro-nano structure exhibits excellent electrical output performance. It is found that under the action of 5 Hz analog mechanical force, the peak value of open circuit voltage can reach up to 77.1 V, and the peak value of short circuit current can reach 33.9 mV/m2. The triboelectric nanogenerator can drive 450 commercial LEDs to work normally. The triboelectric nanogenerator cathodic protection system was established under the condition of simulating mechanical external force. It was found that the protection system can reduce the surface potential of 304ss and form cathodic cathodic polarization protection, which presents excellent application potential.

Subject Area环境工程学
MOST Discipline Catalogue工学 ; 工学::环境科学与工程(可授工学、理学、农学学位)
Pages117
Language中文
Table of Contents

1 绪论.......................................... 1

1.1 研究背景................................................. 1

1.1.1 金属腐蚀.......................................... 1

1.1.2 常用传统金属腐蚀防护方法.......... 3

1.1.3 常用传统金属腐蚀防护方法存在问题.................................................................. 4

1.2 光生阴极保护方法的原理及优点......... 5

1.3 摩擦纳米发电阴极保护方法的原理及优点...................................................................... 6

1.4 光生阴极保护研究现状......................... 8

1.4.1 TiO2的特征及光生阴极保护性能...................................................................... 8

1.4.2 TiO2复合材料的特性及光生阴极保护性能.......................................................... 9

1.4.3 TiO2及复合材料光生阴极保护存在问题............................................................ 15

1.5 摩擦纳米发电自驱动技术及阴极保护研究现状............................................................ 15

1.5.1 摩擦纳米发电及自驱动技术........ 15

1.5.2 摩擦纳米发电自驱动阴极保护.... 17

1.6 本论文选题意义与内容....................... 18

1.6.1 选题意义........................................ 18

1.6.2 研究内容........................................ 19

2 Ni3S2/TiO2纳米结构材料及光生阴极保护研究.......................................... 21

2.1 引言....................................................... 21

2.2 实验部分............................................... 22

2.2.1 实验材料与试剂............................ 22

2.2.2 实验仪器与设备............................ 23

2.2.3 材料制备........................................ 24

2.2.4 材料形貌结构性能表征................ 25

2.2.5 材料电化学性能测试.................... 27

2.3 结果与讨论........................................... 29

2.3.1 材料形貌结构分析....................... 29

2.3.2 材料光吸收性能分析................... 34

2.3.3 材料光电化学性能测试分析....... 34

2.3.4 材料光电化学阴极保护性能测试分析 37

2.3.5 材料光电化学阴极保护机理讨论 39

2.4 本章小结............................................... 40

3 Ni2P/TiO2纳米结构材料及光生阴极保护研究.......................................... 41

3.1 引言....................................................... 41

3.2 实验部分............................................... 42

3.2.1 实验材料与试剂............................ 42

3.2.2 实验仪器与设备............................ 43

3.2.3 材料制备........................................ 43

3.2.4 材料形貌结构性能表征................ 44

3.2.5 材料电化学性能测试.................... 45

3.3 结果与讨论........................................... 45

3.3.1 材料形貌结构分析........................ 45

3.3.2 材料组成分析................................ 49

3.3.3 材料光吸收性能分析.................... 51

3.3.4 材料光电化学测试分析................ 52

3.3.5 材料光电化学阴极保护性能及效果测试分析.................................................... 56

3.3.6 材料光生阴极保护机理讨论........ 59

3.4 本章小结............................................... 61

4 PDMS/CS-Al摩擦纳米发电阴极保护研究.............................................. 63

4.1 引言....................................................... 63

4.2 摩擦纳米发电....................................... 64

4.3 实验部分............................................... 68

4.3.1 实验材料与试剂............................ 68

4.3.2 仪器与设备.................................... 69

4.3.3 基于PDMS不同薄膜的制备....... 69

4.3.4 摩擦纳米发电机组装.................... 71

4.3.5 摩擦纳米发电机工作原理............ 72

4.3.6 摩擦纳米发电机摩擦层材料表征 73

4.3.7 摩擦纳米发电机输出性能的表征 74

4.4 结果与讨论........................................... 74

4.4.1 基于PDMS不同薄膜的形貌分析 74

4.4.2 不同摩擦纳米发电机电输出性能测试分析........................................................ 76

4.4.3 PDMS/CSr-Al TENG接触频率对输出的影响分析............................................ 78

4.4.4 PDMS/CSr-Al TENG输出稳定性测试................................................................ 79

4.4.5 PDMS/CSr-Al TENG作为直接电源管理电路设计............................................ 79

4.4.6 PDMS/CS-Al TENG阴极保护应用及性能测试................................................ 80

4.5 本章小结............................................... 82

5 结论与展望............................. 83

5.1 结论....................................................... 83

5.2 创新点................................................... 84

5.3 展望....................................................... 85

参考文献.................................................. 86

.................................................... 101

作者简历及攻读学位期间发表的学术论文与研究成果........................................ 103

 

Document Type学位论文
Identifierhttp://ir.qdio.ac.cn/handle/337002/164716
Collection海洋环境腐蚀与与生物污损重点实验室
Recommended Citation
GB/T 7714
南有博. 光电化学及摩擦纳米发电对304不锈钢的腐蚀防护研究[D]. 中国科学院海洋研究所. 中国科学院大学,2020.
Files in This Item:
File Name/Size DocType Version Access License
光电化学及摩擦纳米发电对304不锈钢的腐(28032KB)学位论文 暂不开放CC BY-NC-SA
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[南有博]'s Articles
Baidu academic
Similar articles in Baidu academic
[南有博]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[南有博]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.