×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
中国科学院海洋研究所机构知识库
Knowledge Management System Of Institute of Oceanology, Chinese Academy of Sciences
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
Key Labor... [15]
海洋地质与环境重点实... [4]
Key Labora... [3]
海洋生物技术研发中心 [1]
Authors
刘鹰 [1]
李超伦 [1]
Wang Fan [1]
张荣华 [1]
Hu Po [1]
Li Xin [1]
More...
Document Type
Journal a... [21]
Thesis [1]
Date Issued
2022 [1]
2021 [5]
2020 [3]
2019 [3]
2018 [1]
2017 [1]
More...
Language
英语 [20]
中文 [2]
Source Publication
CHINESE JO... [2]
INTERNATIO... [2]
AQUACULTUR... [1]
CONCURRENC... [1]
FRONTIERS ... [1]
GEOPHYSICA... [1]
More...
Funding Project
CAS Progra... [3]
National N... [3]
Strategic ... [3]
Strategic ... [3]
Key Deploy... [2]
Key R&D Pr... [2]
More...
Indexed By
SCI [20]
ISTP [1]
Funding Organization
×
Knowledge Map
IOCAS-IR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 22
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Author Ascending
Author Descending
Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model
期刊论文
REMOTE SENSING OF ENVIRONMENT, 2022, 卷号: 272, 页码: 15
Authors:
Zhang, Xudong
;
Wang, Haoyu
;
Wang, Shuo
;
Liu, Yanliang
;
Yu, Weidong
;
Wang, Jing
;
Xu, Qing
;
Li, Xiaofeng
Adobe PDF(12620Kb)
  |  
Favorite
  |  
View/Download:31/0
  |  
Submit date:2022/04/12
Internal wave
Amplitude
Transfer learning
Remote sensing
In-situ measurement
Laboratory experiment
A Deep Learning Model to Recognize and Quantitatively Analyze Cold Seep Substrates and the Dominant Associated Species
期刊论文
FRONTIERS IN MARINE SCIENCE, 2021, 卷号: 8, 页码: 11
Authors:
Wang, Haining
;
Fu, Xiaoxue
;
Zhao, Chengqian
;
Luan, Zhendong
;
Li, Chaolun
Adobe PDF(3853Kb)
  |  
Favorite
  |  
View/Download:28/0
  |  
Submit date:2022/02/18
cold seep
substrates
epifauna
Faster R-CNN
FPN
VGG16
Characteristics of Global Ocean Abnormal Mesoscale Eddies Derived From the Fusion of Sea Surface Height and Temperature Data by Deep Learning
期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2021, 卷号: 48, 期号: 17, 页码: 11
Authors:
Liu, Yingjie
;
Zheng, Quanan
;
Li, Xiaofeng
Adobe PDF(1562Kb)
  |  
Favorite
  |  
View/Download:20/0
  |  
Submit date:2021/11/30
meososcale eddies
abnormal eddies
multi-source remote sensing data
deep learning
data fusion
statistical analysis of spatiotemporal characteristics
Subsurface Temperature Estimation from Sea Surface Data Using Neural Network Models in the Western Pacific Ocean
期刊论文
MATHEMATICS, 2021, 卷号: 9, 期号: 8, 页码: 14
Authors:
Wang, Haoyu
;
Song, Tingqiang
;
Zhu, Shanliang
;
Yang, Shuguo
;
Feng, Liqiang
Adobe PDF(4325Kb)
  |  
Favorite
  |  
View/Download:41/0
  |  
Submit date:2021/06/24
ocean subsurface temperature
multisource sea surface data
neural network model
western Pacific Ocean
Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network
期刊论文
REMOTE SENSING, 2021, 卷号: 13, 期号: 2, 页码: 18
Authors:
Wang, He
;
Yang, Jingsong
;
Zhu, Jianhua
;
Ren, Lin
;
Liu, Yahao
;
Li, Weiwei
;
Chen, Chuntao
Adobe PDF(5257Kb)
  |  
Favorite
  |  
View/Download:54/1
  |  
Submit date:2021/04/21
Advanced Scatterometer (ASCAT)
significant wave height
WaveWatch III
deep learning
multi-hidden-layer neural network
A Machine-Learning Model for Forecasting Internal Wave Propagation in the Andaman Sea
期刊论文
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 卷号: 14, 页码: 3095-3106
Authors:
Zhang, Xudong
;
Li, Xiaofeng
;
Zheng, Quanan
Adobe PDF(6735Kb)
  |  
Favorite
  |  
View/Download:49/0
  |  
Submit date:2021/05/11
Predictive models
Training
Satellites
Machine learning
Oceans
MODIS
Data models
Andaman sea
internal wave (IW) forecast
machine learning
Deep-learning-based information mining from ocean remote-sensing imagery
期刊论文
NATIONAL SCIENCE REVIEW, 2020, 卷号: 7, 期号: 10, 页码: 1584-1605
Authors:
Li, Xiaofeng
;
Liu, Bin
;
Zheng, Gang
;
Ren, Yibin
;
Zhang, Shuangshang
;
Liu, Yingjie
;
Gao, Le
;
Liu, Yuhai
;
Zhang, Bin
;
Wang, Fan
Adobe PDF(7492Kb)
  |  
Favorite
  |  
View/Download:75/0
  |  
Submit date:2021/04/12
ocean remote sensing
big data
artificial intelligence
image classification
Purely satellite data-driven deep learning forecast of complicated tropical instability waves
期刊论文
SCIENCE ADVANCES, 2020, 卷号: 6, 期号: 29, 页码: 9
Authors:
Zheng, Gang
;
Li, Xiaofeng
;
Zhang, Rong-Hua
;
Liu, Bin
Adobe PDF(7758Kb)
  |  
Favorite
  |  
View/Download:46/0
  |  
Submit date:2020/09/25
A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction From Fully Polarimetric SAR Imagery
期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 59801-59820
Authors:
Song, Dongmei
;
Zhen, Zongjin
;
Wang, Bin
;
Li, Xiaofeng
;
Gao, Le
;
Wang, Ning
;
Xie, Tao
;
Zhang, Ting
Adobe PDF(5827Kb)
  |  
Favorite
  |  
View/Download:46/0
  |  
Submit date:2020/09/23
Marine oil spill
RADARSAT-2
PolSAR
deep learning
feature extraction
convolutional neural network (CNN)
A novel residual graph convolution deep learning model for short-term network-based traffic forecasting
期刊论文
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 卷号: 34, 期号: 5, 页码: 27
Authors:
Zhang, Yang
;
Cheng, Tao
;
Ren, Yibin
;
Xie, Kun
Adobe PDF(4145Kb)
  |  
Favorite
  |  
View/Download:150/0
  |  
Submit date:2020/03/20
Short-term traffic forecasting
spatial-temporal dependency
network topology
graph convolution
residual long short-term memory