IOCAS-IR  > 海洋生态与环境科学重点实验室
黄海浮游动物功能群年际变化研究
时永强1,2
学位类型博士
导师孙松
2015-05-10
学位授予单位中国科学院大学
学位授予地点北京
学位专业海洋生态学
关键词浮游动物功能群 黄海 年间变化 中华哲水蚤 群落结构
其他摘要        浮游动物在海洋生态系统中处于承上启下的位置,其种类和数量变化会导致整个海洋生态系统结构和功能的改变。浮游动物种类繁多、生活史复杂,依据浮游动物粒径及其在生态系统中的作用和地位,将浮游动物划分到不同的功能群中,可以有效简化食物网,可以全面、准确地模拟浮游动物群落的生态过程。本文利用多年浮游动物调查资料,研究了2000−2009年初夏和冬季黄海浮游动物功能群的地理分布及年际变化、2000−2009年与1959年相比浮游动物群落的年间变化、大型桡足类中华哲水蚤在2002年8−10月的种群动力学,以期为浮游动物群落长期变化研究提供基础资料。
        2000−2009年6月在黄海,不同的浮游动物功能群具有各自相对固定的分布模式,大型甲壳类和大型桡足类主要分布在离岸海域,小型桡足类主要分布在水深50 m及以浅的近岸海域,毛颚类主要集中分布于50 m等深线附近区域,而小型水母类主要分布在浅于50 m的近岸海域。黄海冷水团的存在导致黄海不同区域呈现不同的水文条件,从而影响了各浮游动物功能群的分布。其中海水底层温度和海水底层盐度对影响浮游动物功能群的分布模式起到更加重要的作用。黄海各浮游动物功能群存在不同的年际变化趋势。春季较暖年份,大型甲壳类和小型桡足类生物量较大,在较冷年份,毛颚类生物量较大,而大型桡足类生物量年际变化幅度较小。在2007年,小型水母类和海樽类呈现较高丰度,可能与2007年上半年温度较高有关。另外,春季叶绿素a浓度也会影响大型甲壳类的生物量。黄海浮游动物功能群的分布可以影响水母类种群的分布。在各浮游动物功能群中,小型桡足类与大型水母沙海蜇具有类似的地理分布模式,揭示了小型桡足类为大型水母提供饵料供给。观察到小型桡足类生物量的年际变化与温度正相关,推断小型桡足类在冷年生物量较低,会限制大型水母的丰度和规模。
        在2001年1月、11月、2006年12月、2009年2月和12月,大型甲壳类、大型桡足类、毛颚类空间分布类似,主要分布在34°N以北的离岸深水海域;小型桡足类在2001年1月和11月主要分布在离岸海域,而其丰度在其他三个调查航次34°N以北全海域均较高;小型水母类和海樽类近岸分布,出现率和丰度均较小。大型甲壳类和小型桡足类平均丰度分别在2001年1月和11月最高,而在其他航次平均丰度较低且差异不大;大型桡足类和毛颚类丰度年间变化规律一致且波动较大,均在2001年1月最高,在2006年12月最低;小型水母类和海樽类丰度均在2001年11月和2006年12月较高。暖水种浮游动物的丰度和物种数可以有效指示黄海暖流的路径及影响范围。从12月至次年2月,暖水种浮游动物的分布逐渐向北推进,表明黄海暖流影响范围逐渐扩大。黄海暖流对南黄海固有浮游动物优势种的丰度和优势度影响较小,但可能通过黄海暖流的向北推进或改变水体环境来影响各浮游动物功能群的空间分布。
        2000−2009年与1959年6月黄海浮游动物功能群比较来看,大型甲壳类和毛颚类丰度高且波动幅度较大,在1959年和2000—2009年两个时期无明显差异;而大型桡足类丰度在2000−2009年显著高于1959年,波动范围分别在2035−24500和912−1330 ind m-2之间;小型水母类和海樽类丰度一般较低,但是在2007年出现暴发式增加,平均丰度比其它年份的最高平均丰度分别增加了4.8和88.5倍。大型甲壳类和毛颚类分别在东部冷水团内和中部锋面区波动幅度最大,小型水母和海樽类则是在西部浅水区波动幅度最大。分析认为桡足类丰度增加与营养盐浓度升高和鱼类过度捕捞有关,而胶质生物种群剧烈波动与气候变化引起的环境变异相关。
        2006−2007年与1959年全年比较来看,小型水母类群落发生明显改变。在南黄海中西部调查海域,2006−2007年小型水母丰度和站位出现率均高于1959年,推测与海温升高及营养盐浓度升高有关。小型水母在2006−2007年的物种数高于1959年,尤其是在春季,相差幅度最大,原因是2006−2007年春季较高海温促进一些广温近岸物种提前进入增殖状态,导致丰度和物种数均增加。2006−2007年与1959年相比,小型水母的优势种组成发生改变,半球美螅水母、四枝管水母和瓜水母等小型水母成为优势种的月数增加,五角水母成为优势种的月数降低,而一些1959年的小型水母优势种,如嵊山秀式水母、小介穂水母、细颈和平水母等在2006−2007年期间不再是优势种,另外出现一些新的优势种,如八斑芮氏水母、真囊水母、锡兰和平水母。
        对2002年8−10月南黄海中华哲水蚤丰度、发育期组成、性别组成及垂直分布进行了研究,结果表明:温度和饵料是影响中华哲水蚤是否进入生殖状态的主要因素,中华哲水蚤种群可以迅速响应环境变化,一旦暴露于适宜的环境条件(温度和饵料均适宜),中华哲水蚤就会迅速发展和扩张种群。不同区域中华哲水蚤的种群结构存在明显差异。在西北近岸海域,中华哲水蚤在9−10月份进入繁殖盛期,并且卵和无节幼体占比例最高;在黄海中部区域,CV期桡足幼体是比例最高的发育期,当地种群在8−10月份一直保持低繁殖力;在东南海域,中华哲水蚤各发育期丰度在8月份均较高,但随着时间推移,叶绿素a浓度下降,其丰度逐渐降低。当种群处于繁殖期时,中华哲水蚤雌性成体所占比例较高。因此,可以利用中华哲水蚤成体的性别组成反映种群是否处于生殖状态下。大量CV期桡足幼体聚集在黄海冷水团中,是秋、冬季中华哲水蚤繁殖期的主要亲代种群,对其种群发展具有更加重要的作用。
;         Zooplankton occupies a key position in marine ecosystems. Variations in the zooplankton species composition and abundance will change the structure and function of the whole ecosystem. There are many species in zooplankton communities with complex life cycles. According to the size spectrum and the roles and positions in the ecosystem, the zooplankton can be classified into different functional groups, which can effectively simplify the food webs, and simulate the ecological processes of zooplankton communities comprehensively and accurately. Using zooplankton data collected in many years, we studied the regional and interannual variations of zooplankton functional groups in the Yellow Sea in early summer and winter, interannual changes of zooplankton communities between 2000−2009 and 1959, population dynamics of large copepod Calanus sinicus in August−October 2002, aimed to provide basic data for the study of long-term changes of zooplankton communities.
        In June between 2000 and 2009, different zooplankton functional groups had their own relatively fixed distribution patterns. Giant crustaceans and large copepods were found to be mainly distributed offshore, small copepods were mainly located along the 50 m isobath and the coastal region, chaetognaths were mainly sampled along the 50 m isobath, and small jellyfish tended to be located in the coastal region shallower than 50 m. The presence of the Yellow Sea Cold Water Mass (YSCWM), resulting in the different hydrological conditions within different domains, affected the distribution of each zooplankton functional group. Sea bottom temperature and salinity were shown to have been major factors affecting the distribution of zooplankton functional groups. Each functional group had different interannual variations. In warm spring years, giant crustaceans and small copepods showed high biomasses, while in cold spring years, the biomass of chaetognaths was high. Large copepods did not show significant interannual differences. In 2007, small jellyfish and salps had high abundances, which may due to the high temperature in the first half year. In addition, the chlorophyll a concentrations in spring could affect the biomass of giant crustaceans. The distribution of zooplankton can affect the distribution of the jellyfish community in the Yellow Sea. Among zooplankton functional groups, small copepods and giant jellyfish Nemopilema nomurai showed similar distribution patterns, suggesting that the abundance of small copepods was feeding that of giant jellyfish. The observed interannual biomass of small copepod was positively related to temperature, and we suggest that this relationship may explain the rarity of giant jellyfish outbreaks in cold years.
        In January and November 2001, December 2006, and February and December 2009, giant crustaceans, large copepods and chaetognaths showed similar distribution patterns, mainly located offshore north than latitude 34°N. Small copepods were mainly distributed offshore in January and November 2001, while the abundances were relatively high in the entire region north than latitude 34°N. Small jellyfish and salps were distributed inshore with low abundance and occurrence frequency. The average abundances of giant crustaceans and small copepods were highest in January and November 2001, respectively, with low average abundances and little difference during other cruises. The abundances of large copepods and chaetognaths had similar interannual change trends and dramatically fluctuated, both were highest in January 2001 and lowest in December 2006. Both small jellyfish and salps had high abundances in November 2001 and December 2006. The abundance and species number of warm water zooplankton species could effectively indicate the path and range of the Yellow Sea Warm Current (YSWC). From December to February in the next year, the distribution of warm water species gradually moved northward, suggesting that the influence area of the YSWC extended. The influence of the YSWC on the abundance and dominance index of original zooplankton species in the Yellow Sea was small, but the YSWC might affect the spatial distribution of each zooplankton functional group through advancing current or changing the seawater conditions.
        The abundances of zooplankton functional groups were compared between June 2000−2009 and 1959. Giant crustaceans and chaetognaths had relatively high abundances and exhibited wide ranges, and their abundances were similar between 1959 and 2000−2009. The abundance of large copepods was significantly higher in 2000−2009 than in 1959, and the ranges were 2035−24500 and 912−1330 ind m-2 in the two periods, respectively. Small jellyfish and salps usually presented low abundances, but both increased dramatically in 2007, which were 4.8 and 88.5 times higher than the sub-high mean values in the other years, respectively. Giant crustaceans and chaetognaths ranged widely in the YSCWM region and tidal front region, respectively, while small jellyfish and salps fluctuated widely at west shallow region. The results suggested that the increased copepod abundance related to increased nutrition and over-fishing in the Yellow Sea, while dramatic fluctuations of gelatinous zooplankton were attributed to environmental variation caused by climate change.
        The small jellyfish community changed significantly in 2006−2007 compared with that in 1959. In the Midwest region of Yellow Sea, the abundance and occurrence frequency of small jellyfish were higher in 2006−2007 than in 1959, which may be due to the increased temperature and nutrition. The species number of small jellyfish was higher in 2006−2007 than in 1959, especially in spring, because the high seawater temperature in spring in 2006−2007 induced some inshore eurythemic species reproduction in advance, resulting in the increase of abundance and species number. The dominant species composition changed between 2006−2007 and 1959. The frequency of becoming dominant species of some species increased, such as Clytia hemisphaerica, Proboscidactyla flavicirrata and Beroe cucumis, while the frequency of Muggiaea atlantica decreased. Several new dominant species appeared in 2006−2007, including Rathkea octopunctata, Euphysora bigelowi, and Eirene ceylonensis, while some previous dominant species in 1959 (Sugiura chengshanense, Hydractinia minima, and Eirene menoni) were no longer dominant in 2006−2007.
        The abundance, stage composition, sex composition, and vertical distribution of the planktonic copepod Calanus sinicus from August to October 2002 in the southern Yellow Sea were studied. The results showed that temperature and food availability were the main factors that influenced the reproduction of C. sinicus. The C. sinicus population could respond rapidly to environmental changes, and once exposed to favorable conditions (moderate temperature and rich food), the population will quickly develop and expand. The population structure of C. sinicus differed among different domains. C. sinicus entered its reproductive period in September−October in the northwest coastal region, and eggs and nauplii dominated the developmental stages. In the central part of the southern Yellow Sea, CV C. sinicus is the dominant developmental stage, and the population reproduction rates remained low from August to October. All developmental stages of C. sinicus had high abundances in August in the southeast region, but they all gradually decreased in abundance as the summer progressed and the chlorophyll a concentrations decreased. The percentage of C. sinicus females was high during the reproductive period, which suggests that the sex composition of adult C. sinicus may reflect whether or not the population is in the reproductive period. Numerous CV C. sinicus aggregated in the YSCWM in a suspended developmental stage, and they served as the main parental individuals during the reproductive period in autumn–winter, so individuals there may be more important for population development.
学科领域海洋生态与环境科学
语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/22750
专题海洋生态与环境科学重点实验室
作者单位1.中国科学院海洋研究所海洋生态与环境科学重点实验室
2.中国科学院大学
第一作者单位海洋生态与环境科学重点实验室
推荐引用方式
GB/T 7714
时永强. 黄海浮游动物功能群年际变化研究[D]. 北京. 中国科学院大学,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
黄海浮游动物功能群年际变化研究-时永强博(7364KB)学位论文 限制开放ODC PDDL浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[时永强]的文章
百度学术
百度学术中相似的文章
[时永强]的文章
必应学术
必应学术中相似的文章
[时永强]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 黄海浮游动物功能群年际变化研究-时永强博士毕业论文.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。