IOCAS-IR  > 海洋生态与环境科学重点实验室
pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers
Xiao, Zitao1,3; Cao, Liang1,2; Liu, Jinhu1,2; Cui, Wenting1,3; Dou, Shuozeng1,2,3,4
2023-02-01
Source PublicationSCIENCE OF THE TOTAL ENVIRONMENT
ISSN0048-9697
Volume858Pages:13
Corresponding AuthorDou, Shuozeng(szdou@qdio.ac.cn)
AbstractOcean acidification potentially influences the biotoxicity of metals and the antioxidant defense systems of marine organisms. This study investigated how pCO2-driven seawater acidification (SA) affected aqueous-phase copper (Cu) toxicity in the juvenile flounder Paralichthys olivaceus from the perspective of hepatic oxidative stress and damage to better understand the mechanisms underlying the biological effects produced by the two stressors. Fish were exposed to aqueous-phase Cu at relevant ambient and polluted concentrations (0, 5, 10, 50, 100 and 200 mu g L-1) at different pH levels (no SA: pH 8.10; moderate SA: pH 7.70, pCO2 similar to 1353.89 mu atm; extreme SA: pH 7.30, pCO2 similar to 3471.27 mu atm) for 28 days. A battery of biomarkers in the livers was examined to investigate their roles in antioxidant defense and detoxification in response to coexposure. Hepatic Cu accumulation (30.22-184.90 mg kg-1) was positively correlated with Cu concentrations. The biomarkers responded adaptively to different redox states following SA and Cu exposure. In unacidified seawater, increases in Cu concentrations significantly induced hepatic lipid peroxidation (LPO, by up to 27.03 %), although compensatory responses in antioxidant defenses and detoxification were activated. Moderate SA helped maintain hepatic redox homeostasis and alleviated LPO through different defense strategies, depending on Cu concentrations. Under extreme SA, antioxidant-based defenses were activated to cope with oxidative stress at ambient-low Cu concentrations but failed to defend against Cu toxicity at polluted Cu levels, and LPO (by up to 63.90 %) was significantly induced. Additionally, thiols (GSH and MT) responded actively to cope with Cu toxicity under SA. SOD, CAT, EROD, and GST were also sensitively involved in defending against hepatic oxidative stress during coexposure. These findings highlight the notable interactive effects of SA and Cu and provide a basis for understanding antioxidant-based defenses in marine fish confronting environmental challenges.
KeywordOcean acidification Heavy metal Marine fish Oxidative stress Biotransformation Integrative response
DOI10.1016/j.scitotenv.2022.160040
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China (NSFC)[42176107]
WOS Research AreaEnvironmental Sciences & Ecology
WOS SubjectEnvironmental Sciences
WOS IDWOS:000898702900013
PublisherELSEVIER
WOS KeywordINDUCED OXIDATIVE STRESS ; FRESH-WATER FISH ; OCEAN ACIDIFICATION ; ELEVATED CO2 ; MARINE FISH ; EXPOSURE ; RESPONSES ; BIOMARKERS ; CU ; METALLOTHIONEINS
Citation statistics
Cited Times:5[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.qdio.ac.cn/handle/337002/183264
Collection海洋生态与环境科学重点实验室
Corresponding AuthorDou, Shuozeng
Affiliation1.Chinese Acad Sci, Inst Oceanol, Ctr Ocean Mega Sci, CAS Key Lab Marine Ecol & Environm Sci, Qingdao 266071, Peoples R China
2.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao 266071, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100039, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
First Author AffilicationInstitute of Oceanology, Chinese Academy of Sciences
Corresponding Author AffilicationInstitute of Oceanology, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Xiao, Zitao,Cao, Liang,Liu, Jinhu,et al. pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2023,858:13.
APA Xiao, Zitao,Cao, Liang,Liu, Jinhu,Cui, Wenting,&Dou, Shuozeng.(2023).pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers.SCIENCE OF THE TOTAL ENVIRONMENT,858,13.
MLA Xiao, Zitao,et al."pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers".SCIENCE OF THE TOTAL ENVIRONMENT 858(2023):13.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Xiao, Zitao]'s Articles
[Cao, Liang]'s Articles
[Liu, Jinhu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xiao, Zitao]'s Articles
[Cao, Liang]'s Articles
[Liu, Jinhu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xiao, Zitao]'s Articles
[Cao, Liang]'s Articles
[Liu, Jinhu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.