Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M = Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations
Sun, Biao1; Wang, Jinguo1; Chen, Min1; Sun, Honghua1; Wang, Xiutong2; Men, Yong1
2023
发表期刊MATERIALS CHEMISTRY AND PHYSICS
ISSN0254-0584
卷号293页码:12
通讯作者Wang, Jinguo(Jinguowang1982@sues.edu.cn)
摘要Developing mesocrystal bimetal oxide solid solutions with distinctive architectures applied for VOCs elimination is of significant importance towards environmental catalysis. Herein, mesocrystal MxCe1-xO2 (M = Ni, Cu, Zn) solid solution within hollow spheres has been readily synthesized via a facile solvothermal strategy, primarily aiming to boost catalytic acetone oxidation performance by tailoring transition-metal cations. The physicochemical properties of the synthesized mesocrystal catalysts have been analyzed using various means of characterizations and correlated with their catalytic acetone oxidation performances. Research results evidence that the catalytic acetone oxidation performance ranked in the order of CeO2 < Ni(0.01)5Ce(0.985)O(2) < Zn0.015Ce0.985O2 < Cu0.015Ce0.985O2, in which Cu0.015Ce0.985O2 indeed acted as the optimal catalyst that completely achieved 100% CO2 selectivity and 100% acetone conversion at 210 degrees C under test conditions of 20 vol%O-2, 80 vol%N-2 as the balance gas, WHSV = 90,000 mL/g(cat).h and 1000 ppm acetone. This fact can be mainly credited to the intrinsic discrepancy of transition-metal cations that resulted in different numbers of defective sites and active oxygen species together with varied reducible capabilities. Meanwhile, all synthesized mesocrystal catalysts exhibit both excellent long-term stabilities and strong water tolerances, mainly due to the integrated factors of the mesocrystal feature together with stable crystal phase meliorating thermal stability and the robust hollow spherical architecture suppressing structural collapse, demonstrating great potentials towards VOCs elimination.
关键词Mesocrystal Solid solution Porous spheres Transition-metal Acetone oxidation
DOI10.1016/j.matchemphys.2022.126925
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China ; Natural Science Foundation of Shanghai ; 5th Top Talent Support Program of Songjiang District ; [22076117] ; [20ZR1422500]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000880754600001
出版者ELSEVIER SCIENCE SA
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/180329
专题海洋环境腐蚀与生物污损重点实验室
通讯作者Wang, Jinguo
作者单位1.Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Sun, Biao,Wang, Jinguo,Chen, Min,et al. Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M = Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations[J]. MATERIALS CHEMISTRY AND PHYSICS,2023,293:12.
APA Sun, Biao,Wang, Jinguo,Chen, Min,Sun, Honghua,Wang, Xiutong,&Men, Yong.(2023).Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M = Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations.MATERIALS CHEMISTRY AND PHYSICS,293,12.
MLA Sun, Biao,et al."Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M = Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations".MATERIALS CHEMISTRY AND PHYSICS 293(2023):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Biao]的文章
[Wang, Jinguo]的文章
[Chen, Min]的文章
百度学术
百度学术中相似的文章
[Sun, Biao]的文章
[Wang, Jinguo]的文章
[Chen, Min]的文章
必应学术
必应学术中相似的文章
[Sun, Biao]的文章
[Wang, Jinguo]的文章
[Chen, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。