IOCAS-IR  > 深海极端环境与生命过程研究中心
南海F冷泉平端深海偏顶蛤种群的年龄结构
其他题名The age structure of Gigantidas platifrons in Formosa cold seep of the South China Sea
胡希源
学位类型硕士
导师李超伦
2022
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
关键词深海,平端深海偏顶蛤,生长曲线,年龄结构,冷泉
摘要

深海热液和冷泉生态系统自从被发现以来,一直是海洋科学研究领域的热点话题。平端深海偏顶蛤(Gigantidas platifrons是一种广泛分布于西太平洋热液和冷泉生态系统中的无脊椎动物,其通常在热液/冷泉溢流口周边形成巨大的生物量,是这些深海化能生态系统的主要优势种之一。同时,平端深海偏顶蛤在热液/冷泉区形成大规模的贻贝床,可以为其他底表生物提供附着基、改变海底溢出流体的扩散过程,成为深海化能生态系统中具有代表性的生境之一。因此,平端深海偏顶蛤无论在深海化能生态系统的物质循环和能量流动,还是生境营造和群落演替中都发挥着重要的作用。近几年对平端深海偏顶蛤的共生互作、环境适应性等方面的研究取得一系列成果,但受制于深海调查和研究技术,对于表征其种群基本特征、预测种群动态变化的重要指标—种群年龄结构和生长速率的认知仍比较匮乏。

本文以我国南海北部福尔摩沙冷泉生态系统的优势种平端深海偏顶蛤(G.platifrons)为研究对象,利用2020年“科学”号考察船采集的样品,基于海洋贝壳由于生长速率变化导致在贝壳中存在生长轮/线(Sclerochronology)这一现象,开展了南海福尔摩沙冷泉生态系统平端深海偏顶蛤种群年龄结构研究。本研究确定了Mutvei’s溶液蚀刻染色方法最适浓度;通过计数贝壳生长线估算平端深海偏顶蛤的年龄,建立并验证了平端深海偏顶蛤的生长方程式,探讨了平端深海偏顶蛤的生长速率以及生长线间距的变化规律。此外,本研究根据2016年海底原位图像,并结合ArcGIS软件分析,进一步探究了福尔摩沙冷泉区平端深海偏顶蛤种群的年龄结构、不同微区的优势壳长和优势年龄,以及环境参数对种群年龄分布的影响。主要结果如下:

Mutvei’s溶液蚀刻染色方法的适宜浓度为1LMutvei’s溶液含有500ml 3%的醋酸,500ml 25%的戊二醛和5 g的阿尔新蓝(alcian blue)粉末;平端深海偏顶蛤的年龄与贝壳壳长关系的生长方程为: L=117*(1-e-0.184t),采样获得的南海冷泉平端深海偏顶蛤的最大壳长可达11.4cm,最大年龄可达到13.5龄,估算初始的生长速率为1.3cm/年;研究区域的平端深海偏顶蛤的贝壳长度集中在4~7cm,占比60%;年龄分布集中在2~4龄,占比49.7%④平端深海偏顶蛤的贝壳生长线间距的变化可以反映其随着时间的生长状况。

根据2016年的海底照片并结合AcrGIS软件的分析,初步获得了南海冷泉区域平端深海偏顶蛤种群年龄分布的大致情况。研究发现,南部区域的平端深海偏顶蛤个体长度集中分布在2-4cm,年龄主要分布在1-2龄,中部区域的个体长度集中分布在4-8cm,年龄主要分布在2-4龄,北部区域的个体长度集中分布在7-10cm,年龄主要分布在2-6龄。总体来讲,幼年个体集中分布在冷泉南部区域,而中部和北部区域的平端深海偏顶蛤个体年龄较大,这与甲烷浓度和溶解氧浓度从南到北逐渐降低密切相关。本研究结果为进一步开展平端深海偏顶蛤的生长研究提供了基础数据,相关结果有助于深入解析冷泉区域的种群动态变化规律。

其他摘要

Hydrothermal vent and cold seep ecosystems are one of the hottest topics in marine research ever since they were discovered. The deep-sea mussel Gigantidas platifrons, widespread in both hydrothermal vents and cold seeps of West Pacific, is one of the dominate species with very high carry capacity that colonizes there. These mussels can form large-scale mussel beds that can serve as attachment bases for other benthonic deep-sea organisms and transfer the diffusion mode of seabed overflow, making seeps and vents most representative habitats in deep-sea ecosystems. Therefore, G. platifrons has been reported to play an important role in the circulation of material and energy flow, habitat construction and community succession in deep-sea ecosystem. In recent years, a series of research achievements have been made in the areas of host-symbiont interactions and environmental adaptations of G. platifrons. However, hindered by both remoteness and technical challenges, our knowledge of the basic population characteristics of G. platifrons including its age structure and growth rate remains lacking.

In the current study, G. platifrons, collected from Formosa cold seep in the north of South China Sea, was selected as the research object. A sclerochronological investigation was conducted on mussels obtained by research vessel “Kexue” in 2020 to determine the ages, growth curves, shell growth rates and patterns of growth lines of G. platifrons. The optimum concentration of Mutvei’s solution for revealing the microgrowth structures of mussel shell’s skeletons was determined. Besides, based on the analysis of seabed in-situ images of 2016 by the ArcGIS software, we further discussed the age structure, dominant classes of shell length and age of G. platifrons population at different micro-regions in Formosa cold seep, as well as the potential environmental factors affecting population age distribution. The main results are as follows:

   a) The optimum concentration of mutvei’s solution for etching and staining mussel shells is 1L mutvei’s solution containing 500 ml of 3% acetic acid, 500ml of 25% glutaraldehyde and 5g of Alcian blue powder; b) the growth curve for G. platifrons was computed: L=117*(1-e-0.184t); according to this equation, G. platifrons in the cold seep of the South China Sea reaches its maximum shell length of 11.4 cm at an age of 13.5 years-old with initial growth rate of 1.3cm/year; c) The shell length of G. platifrons mainly distributed between 4cm and 7cm, accounting for 60% of the total population, while the age of G. platifrons mainly ranges between 2 and 4 years-old, accounting for 49.7% of the total population; d) the distance between the growth lines in G. platifrons could imply mussels’ growth condition varied with times.

By analyzing seabed in-situ images obtained in 2016 with the ArcGIS software, we obtained a general picture of the age structure of G. platifrons populations in Formosa cold seeps of South China Sea. In the southern region, the shell lengths of G. platifrons are usually 2 to 4 cm, and the age is generally 1 to 2 years old; in the central region, the shell lengths mainly range from 4 to 8cm, and the ages mainly range from 2 to 4 years old. In the northern region, the shell length primarily ranged from 7 to 10 cm, and the age primarily ranged from 2 to 6 years old. As a general rule, juvenile mussels congregate in the southern region of Formosa cold seep, while older deep-sea mussels prefer central and northern regions, which are closely linked to gradual decline in the concentrations of methane and dissolved oxygen from south to north. Overall, the current study provides basic data for further research on the growth of G. platifrons, which greatly contributes to an understanding of the population dynamic of deep-sea organisms in cold seep.

语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179701
专题深海极端环境与生命过程研究中心
中国科学院海洋研究所
推荐引用方式
GB/T 7714
胡希源. 南海F冷泉平端深海偏顶蛤种群的年龄结构[D]. 中国科学院海洋研究所. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
胡希源-南海F冷泉平端深海偏顶蛤种群的年(2389KB)学位论文 延迟开放CC BY-NC-SA浏览 2025-7-1后可获取
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[胡希源]的文章
百度学术
百度学术中相似的文章
[胡希源]的文章
必应学术
必应学术中相似的文章
[胡希源]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 胡希源-南海F冷泉平端深海偏顶蛤种群的年龄结构.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。