IOCAS-IR  > 海洋环境腐蚀与与生物污损重点实验室
有机硅基海洋防污材料的制备及性能研究
孙佳文
Subtype博士
Thesis Advisor段继周
2022-05-18
Degree Grantor中国科学院大学
Place of Conferral中国科学院海洋研究所
Degree Name理学博士
Degree Discipline海洋腐蚀与防护
Keyword聚二甲基硅氧烷,低表面能,自修复,溶胶-凝胶,防污涂层
Abstract

生物污损是海洋工业中所面临的一个非常严重的问题。污损生物在表面的附着不仅增加了船舶的燃料消耗,并给工程结构带来危害,如加速生物腐蚀和造成核电站的海水进水和排水管道的堵塞。有机硅弹性体由于其稳定的化学特性、光滑的表面、低表面能和低弹性模量而被广泛用于污损释放涂层。然而,现有的硅基防污涂层不能阻止细菌和藻类的生长,在静态条件下防污性能较差;硅基涂层的低表面能导致与基底的附着力低,所以涂层在长期浸泡在海水中后很容易从设施表面剥离;硅基涂层由于机械性能较差而容易损坏,从而减少了使用寿命。所以本课题将从赋予有机硅涂层的静态防污性能、增强其附着力和改善其力学性能较低的三个角度入手展开研究,主要研究内容和结果如下:

1首次通过一种非常简便和廉价的方法开发了一种具有良好的力学、自修复和防污性能的新型有机硅聚(脲-硫脲)/单宁酸复合材料(PDMS-P(Ua-TUa)-TA)。硫脲基、脲基和单宁酸(TA)分子之间形成的多个动态氢键使弹性体具有优异的力学性能(拉伸强度:2.47 MPa,扯断伸长率:~1000%)。薄膜上的划痕在空气中12分钟内完全消失,材料3小时后的自修复效率高达98.4%,在人工海水中12小时的自修复效率可达到95.1%。此外,TA均匀地分散在聚合物基体中使涂层具有优异的抗菌和抗藻性能以及对基体的强附着力(玻璃纤维增强环氧树脂(GFE):~2.2 MPa;钢片:~3.2 MPa。实验室生物试验显示,PDMS-P(Ua-TUa)-TA具有出色的静态防污性能,对海洋细菌大肠杆菌、金黄色葡萄球菌和假单胞菌分别减少96%95%93%的粘附,对舟形藻减少了84%的附着。这项工作为开发高性能硅基防污涂层提供了一条有希望的途径。

2)通过功能化单体硫辛酸-苯并噻唑(LA-BTZ)与LA改性的聚二甲基硅氧烷(PDMS)基聚氨酯(PDMS-PUU-LA)之间的二硫交换反应,开发了一种具有双重防污和防腐性能的新型智能自修复硅基涂料。聚合物主链中的灵活的动态共价二硫键和强大的动态交联氢键确保了材料具有优异的拉伸强度(2.58 MPa)、扯断伸长率(1014.7%)和自修复性能。研究发现,室温下薄膜在空气中的划痕在40分钟内完全消失,材料在空气中和人工海水中的自修复效率分别为98.5%4 h)和94.6%8 h)。涂层对GFE和钢基底的附着强度分别为~2.50 MPa~3.33 MPa。此外,实验室生物实验和长达120天的实海挂板实验结果表明,本研究中没有添加任何有毒杀生剂的涂层具有优异的静态防污性能。此外,电化学阻抗和盐雾测试结果表明,该涂层在长期的浸泡实验中也具有良好的耐腐蚀性。因此,这项工作提出了一种有效的用于海洋防污和防腐蚀新型生态友好型智能硅涂层。

3)首次合成了抗菌小分子丙烯酰胺-苯并噻唑、功能化硅烷封端调聚物和二氧化锆溶胶,最后通过简便的溶胶-凝胶反应制备了环保透明有机硅杂化硬质涂层。由于二氧化锆溶胶与长链功能化硅烷封端调聚物的共价键合,使得杂化涂层不仅具有良好的柔韧性,而且具有高硬度(6H)以及对基材的良好附着力(GFE2.24 MPa;钢片:2.94 MPa);杂化涂层SG-1SG-2SG-3的表面能在22 mJ/m225 mJ/m2之间,并且涂层的粗糙度Rq小于5 nm,表面非常光滑,使其具有良好的污损释放能力。此外,由于杂化网络中引入了硅烷封端调聚物,聚合物中的苯并噻唑基团,PEG链段和吡咯烷酮基团的存在赋予了涂层优异的污损阻抗性能,并且该杂化涂层并无任何杀生物质的释放。本研究为开发高性能新型环保透明硬质海洋防污涂层提供了新的思路。

Other Abstract

Biofouling is a serious problem in the marine industries. The attachment of fouling organisms to surfaces increases the fuel consumption of ships and introduces hazards to engineered structures, such as accelerated biocorrosion and blocked seawater inlet and drainage pipelines of nuclear power plants. Poly(dimethylsiloxane) (PDMS) elastomers are widely used in fouling release coatings due to their stable chemical properties, smooth surface, low surface energy, and low elastic modulus. These unique surface properties are unfavorable for the attachment of organisms and facilitate the removal of attached ones by shear force. However, applications of silicone-based fouling release coatings have been limited by several factors. First, existing coatings cannot prevent the growth of bacteria and algae on them, showing to poor antifouling performance under static conditions. Second, the low surface energy of silicone-based coatings leads to poor adhesion to the substrate, so the coatings can easily peel off the surface of facility after being immersed in seawater for a long time. Third, silicone-based coatings are easily damaged due to weak mechanical properties, which will reduce the lifetime. Therefore, this topic will start from three aspects: giving the static antifouling performance of silicone coating, enhancing its adhesion and improving its mechanical properties. The main research contents and results are as follows:

(1) A novel silicone-based poly(urea-thiourea)/tannic acid composite (PDMS-P(Ua-TUa)-TA) with excellent mechanical, self-healing and antifouling properties is developed. The multiple dynamic hydrogen bonds formed by thiourea groups, urea groups, and tannic acid (TA) molecules ensured a tough elastomer (ultimate strength: 2.47 MPa) with high stretchability (~1000%). TA molecules as partial hydrogen bonding cross-linking sites interacted rapidly with urea and thiourea groups before migration of polymer chains, resulting in fast and efficient self-healing. Scratches on the film completely disappeared within 12 min, and the repair efficiency of strength was up to 98.4% within 3 h under ambient condition. Self-healing behavior was also evaluated in artificial seawater and the healing efficiency was 95.1%. Furthermore, TA uniformly dispersed in the polymer matrix provides good antibacterial and anti-diatom properties, as well as strong adhesion to the substrates (Glass fiber reinforced epoxy resin (GFE): ~ 2.2 MPa, steel: ~ 3.2 MPa). Laboratory bioassays against marine bacteria adhesion (~96%, ~95% and ~93% reduction for P. sp., E. coli, and S. aureus, respectively) and diatom attachment (~84% reduction) demonstrated an outstanding antifouling property of the PDMS-P(Ua-TUa)-TA. This work provides a promising pathway towards the development of high-performance silicone-based coatings for marine anti-biofouling.

(2) The present study aimed to develop a novel smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties was through disulfide exchange reaction between the functionalized monomer “lipoic acid-benzothiazole” (LA-BTZ) and LA modified polydimethylsiloxane (PDMS) based polyurea-urethane (PDMS-PUU-LA). Multiple dynamic bonds in backbone, flexible disulfide bonds, and strong cross-linked hydrogen bonds ensure the PDMS-based polymer with good toughness (2.58 MPa of ultimate strength), high stretchability (1014.7%), and self-healing properties. It was found that the scratches on the film in air completely disappeared within 40 minutes at room temperature. The time required for the healing efficiency of strength ranged between 98.5% and 94.6% under ambient condition and artificial seawater was only 4 and 8 hours, respectively. The adhesion strength of silicon-based coating to epoxy resin and steel substrate was ~2.50 MPa and ~3.33 MPa, respectively.  In addition, results of laboratory bioassays and marine field test of 120-day demonstrated that coating without any additional toxic biocides in the present study had long-term static fouling-resistant properties. Further, results of electrochemical impedance spectroscopy and salt spary measurements in the present study showed that the coating also had good corrosion resistance in long-term immersion experiments. Therefore, the current work presented a novel eco-frien[1]dly smart silicone-based coating for marine antifouling and anti-corrosion.

(3) Antibacterial small molecule acrylamide-benzothiazole, functional silane capping polymer and zirconia sol were synthesized for the first time. Finally, environment-friendly transparent silicone hybrid hard coatings were prepared by simple sol-gel reaction. Due to the covalent bonding between zirconia sol and long-chain "functional" silane end-capping polymers, the hybrid coating not only has good flexibility, but also has high hardness (6H) and good adhesion to the substrate (GFE:2.24 MPa; steel: 2.94 MPa). The surface energy of hybrid coatings SG-1, SG-2 and SG-3 is between 22 mJ/m2 and 25 mJ/m2, and the roughness Rq of hybrid coatings is less than that of 5 nm, and the surface is very smooth, which makes them have good fouling release ability. In addition, due to the introduction of silane-capped telomers in the hybrid network, the presence of benzothiazole groups, PEG segments and pyrrolidone groups in the polymer gives the coating excellent fouling impedance properties, and the hybrid coating does not release any biocide. This study provides a new idea for the development of a new type of environment-friendly transparent hard marine antifouling coating.

 

 

Subject Area化学 ; 材料科学
MOST Discipline Catalogue理学
Language中文
Table of Contents

第1章 绪论. 1

1.1 研究背景... 1

1.2 海洋生物污损的形成... 2

1.2.1 典型的海洋污损生物及附着过程... 3

1.2.2 海洋生物污损的形成过程与影响因素... 7

1.3 海洋防污涂料技术... 8

1.3.1 防污涂料的历史... 8

1.3.2 化学活性防污涂料... 10

1.3.3 污损释放型防污涂料... 15

1.3.4 污损阻抗型防污涂料... 21

1.3.5 仿生防污涂层... 23

1.3.6 纳米复合防污涂层... 26

1.3.7 光催化防污涂层... 28

1.3.8 两亲性防污涂层... 29

1.4影响生物粘附的因素... 30

1.4.1 接触角和表面能... 31

1.4.2 表面粗糙度... 32

1.5影响污损释放特性的因素... 33

1.5.1 弹性模量... 33

1.5.2 涂层厚度... 33

1.6污损释放性能的评价方法... 34

1.7 选题依据与研究内容... 34

1.7.1 选题依据... 34

1.7.2 研究内容... 35

第2章 自修复有机硅基聚脲硫脲/单宁酸复合防污涂层的制备及性能研究. 37

2.1 引言... 37

2.2 实验部分... 40

2.2.1 原料及纯化... 40

2.2.2 PDMS-P(Ua-TUa)PDMS-P(Ua-TUa)/TA的合成... 40

2.2.3 表征方法及仪器... 41

2.3 结果与讨论... 45

2.3.1化学结构表征... 45

2.3.2 热力学和动态力学性能... 49

2.3.3力学性能... 51

2.3.4自修复性能... 56

2.3.5表面性能... 64

2.3.6 附着强度... 69

2.3.7 TA的累计释放... 70

2.3.8 抗菌和抗藻性能... 71

2.4 本章小结... 75

第3章 具有双重防污和防腐性能的环保智能自修复有机硅涂层的制备及性能研究. 76

3.1 引言... 76

3.2 实验部分... 79

3.2.1 原料及纯化... 79

3.2.2 LA-BTZ的合成... 79

3.2.3 LA改性聚二甲基硅氧烷基聚氨酯(PDMS-PUU-LA)的合成... 79

3.2.4 LA-BTZ改性聚二甲基硅氧烷基聚氨酯(PDMS-PUU-TZ)的合成... 80

3.2.3 表征方法及仪器... 81

3.3结果与讨论... 84

3.3.1 化学结构表征... 84

3.3.2 力学性能... 88

3.3.3 自修复性能... 91

3.3.4 附着强度... 100

3.3.5 表面性能... 102

3.3.6 抗菌性能... 107

3.3.7 抗藻性能... 109

3.3.8 实海防污性能... 110

3.3.9 防腐蚀性能... 111

3.4 本章小结... 117

第4章 环保透明有机硅杂化硬质防污涂层的制备及性能研究. 119

4.1 引言... 119

4.2 实验部分... 121

4.2.1 原料及纯化... 121

4.2.2 丙烯酰胺-苯并噻唑的合成... 121

4.2.3 硅烷封端调聚物的合成... 121

4.2.4二氧化锆溶胶的合成... 122

4.2.5有机硅杂化硬质防污涂层的制备... 122

4.2.6 表征方法及仪器... 123

4.3结果与讨论... 124

4.3.1 化学结构表征... 124

4.3.2 力学性能... 126

4.3.3 接触角和表面能... 127

4.3.4 附着强度... 131

4.3.5 粗糙度... 132

4.3.6 抗菌性能... 134

4.3.7 抗藻性能... 134

4.4 本章小结... 136

第5章 结论与展望. 138

5.1 主要结论... 138

5.2 创新点... 139

5.3 研究展望... 140

参考文献. 142

致 谢. 153

作者简历及攻读学位期间发表的学术论文与研究成果     155

Document Type学位论文
Identifierhttp://ir.qdio.ac.cn/handle/337002/178399
Collection海洋环境腐蚀与与生物污损重点实验室
Corresponding Author孙佳文
Recommended Citation
GB/T 7714
孙佳文. 有机硅基海洋防污材料的制备及性能研究[D]. 中国科学院海洋研究所. 中国科学院大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
孙佳文-博士论文.pdf(12703KB)学位论文 延迟开放CC BY-NC-SAView 2024-7-1后可获取
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[孙佳文]'s Articles
Baidu academic
Similar articles in Baidu academic
[孙佳文]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙佳文]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 孙佳文-博士论文.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.