IOCAS-IR
深海气相流体中硫化物矿物组成与结构的拉曼光谱分析方法
其他题名Raman spectroscopy analysis of sulfide mineral composition and structure in deep sea gas phase fluids
马良
学位类型硕士
导师张鑫
2022-04-29
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称工学硕士
学位专业地质工程
关键词拉曼光谱 气相流体 蘑菇帽 热液硫化物 冲绳海槽
摘要

  冲绳海槽南部Yokosuka地区的热液系统中存在一种特殊的倒置湖结构,湖的内部以气相流体为主,其中海水高温蒸汽相与CH4CO2等气体混合共存,湖顶上部是形似蘑菇帽状的硫化物结构。不同热液环境体系下形成的硫化物在成矿模式、元素迁移与富集情况等方面都有很大的差异。目前关于深海热液硫化物的原位探测中并没有一种方法能够快速识别这种蘑菇帽状的硫化物,而且对原位条件下硫化物的地球化学特征尚不能快速做出初步判断。本文采用共聚焦显微拉曼光谱技术对冲绳海槽南部蘑菇帽状硫化物、南部非蘑菇帽状硫化物以及中部热液硫化物进行了对比分析,研究了不同热液环境中硫化物矿物频移与半峰宽的显著变化,依据拉曼频移与半峰宽的变化建立了这种独特气相流体中硫化物的识别方法。除此之外,本文还对不同环境中的硫化物进行了地球化学 (电子探针、主-微量元素、硫-铅同位素等) 的验证分析。

  拉曼光谱的结果显示,蘑菇帽中黄铜矿与闪锌矿的主峰拉曼频移分别发生了蓝移与红移现象,并且三个地区中蘑菇帽中的黄铜矿与闪锌矿都显示出一个较大的半峰宽。蘑菇帽中矿物的拉曼频移发生变化说明了黄铜矿与闪锌矿内部的元素组分受到了影响,拉曼光谱半峰宽的变大又指示了蘑菇帽中黄铜矿与闪锌矿结晶度差。相比之下,蘑菇帽样品中硫酸盐矿物重晶石与单质硫的拉曼光谱并没有显示出太大的变化,在此处受到的影响较小。电子探针的分析结果显示蘑菇帽中黄铜矿与闪锌矿内部的元素组分存在差异,而重晶石等矿物的元素组分并没有发生变化,有效地证实了拉曼光谱的结论。依据蘑菇帽中黄铜矿与闪锌矿的变化作为指标,能够初步反映硫化物的一个生成环境。

  元素地球化学分析能够进一步表征蘑菇帽样品的特殊性,深入发掘硫化物原位测时拉曼分析方法的实用性。元素分析结果显示蘑菇帽样品具有特殊的元素组成。蘑菇帽样品中具有高含量的MnBaSr,低含量的FeCuZnPbBiMoCdGa。同时蘑菇帽样品中BaSrCuMoCuBiZnPbZnCdZnGa在富集含量方面具有相同的趋势。同时,为了排除岩浆源、下覆岩石等对蘑菇帽样品数据造成差异的可能性,本研究又进行了S-Pb同位素分析。蘑菇帽和非蘑菇帽硫化物样品具有相同的S-Pb同位素组成,表明热液源不是造成蘑菇帽硫化物差异的主要原因。因此本文认为影响了蘑菇帽样品检测差异的主要因素是倒置湖中特有的气相流体。

  本研究以黄铜矿与闪锌矿的拉曼光谱变化作为指标,能够为原位探测热液硫化物提供初步的信息。地球化学的结果进一步验证了拉曼光谱对硫化物的识别。本研究建立的拉曼光谱分析方法可为将来热液硫化物的原位探测以及取样工作提供重要的指导意义。

其他摘要

The hydrothermal system in Yokosuka area, southern Okinawa Trough, has a special inverted lake structure. The interior of the lake is dominated by gas phase fluid mixed with the high-temperature steam phase of seawater and CH4, CO2 and other gases, topped by a mushroom cap shaped sulfide (MCs) structure. Sulfides formed under different hydrothermal environmental systems vary greatly in mineralization patterns, elemental migration and enrichment. At present, there is no index that can quickly identify the formation environment of MCs when to take the in-situ detection of deep-sea hydrothermal, and the geochemical characteristics of sulfide cannot be preliminarily estimated quickly under the in-situ condition. In this thesis, confocal micro-Raman spectroscopy was used to compare the mushroom-cap sulfide, the non-mushroom-cap sulfide in the southern part and the hydrothermal sulfide in the central part, researching significant changes in the frequency shift and half-peak width of sulfide minerals in different hydrothermal environments. And based on the variation of Raman frequency shift and half peak width, the index of identifying sulfide formed under the influence of this unique gas phase fluid is established. In addition, systematic geochemical (electron microprobe, major-trace element, sulfur-lead isotope, etc.) analyses of sulfides in different environments were also carried out.

The results of Raman spectrum show that the main peaks of chalcopyrite and sphalerite in MCs occurs blue shift and red shift phenomenon respectively, and the chalcopyrite and sphalerite in MCs show a large full width at half maximum (FWHM). The change of Raman shift of minerals in MCs indicates that the elements in chalcopyrite and sphalerite are affected, and the increase of FWHM of Raman spectrum indicates the poor crystallinity of chalcopyrite and sphalerite. In contrast, the Raman spectra of the sulfate mineral barite and elemental sulfur in the MCs do not show much change and are less affected here. The results of electron probe analysis show that there is a difference in the element composition between chalcopyrite and sphalerite, while the element composition of barite does not change, which effectively confirms the conclusion of Raman spectroscopy. According to the variation of chalcopyrite and sphalerite in MCs, it can preliminarily reflect a formation environment of sulfide.

Elemental geochemical analysis can further characterize the particularity of MCs and further explore the practicability of Raman analysis method in sulfide in-situ measurement. The results of the elemental analysis showed that the MCs had a specific elemental composition. MCs featured high Mn, Ba, and Sr and low Fe, Cu, Zn, Pb, Bi, Mo, Cd, and Ga. The same enrichment trends were observed among Ba–Sr, Cu–Mo, Cu–Bi, Zn–Pb, Zn–Cd, and Zn–Ga. In addition, in order to exclude the influence of magma source, overlying rocks, etc., sulfur-lead isotope analysis was performed on the samples. The MCs and non-MCs have the same S-Pb isotopic composition, indicating that hydrothermal source is not the main reason for the MCs difference. Therefore, this thesis suggests that, the main factor affecting the difference of MCs is the unique gas phase fluid in inverted lake.

In this study, the variation of Raman spectra of chalcopyrite and sphalerite is used as an indicator, which can provide preliminary information for in situ detection of hydrothermal sulfides. The geochemical results further confirm the recognition of sulfide by Raman spectroscopy. The Raman spectroscopy method established in this study can provide important guidance for future in situ detection and sampling of hydrothermal sulfides.

页数89
语种中文
目录

第一章 绪论... 1

1.1 选题背景与意义... 1

1.2 研究现状... 3

1.2.1 热液硫化物研究现状... 3

1.2.2 蘑菇帽状热液硫化物研究现状... 4

1.2.3 拉曼光谱技术在热液硫化物中的应用... 5

1.3 主要研究内容与章节安排... 6

第二章 激光拉曼光谱技术... 9

2.1 拉曼光谱技术的原理... 9

2.1.1 拉曼散射形成原理经典电磁理论... 9

2.1.2 拉曼散射的形成原理量子力学理论... 10

2.2 拉曼光谱技术的发展历史... 12

2.3 拉曼光谱技术的特点与优势... 13

2.4 激光拉曼光谱仪... 14

2.4.1 共聚焦激光拉曼光谱仪... 14

2.4.2 深海原位激光拉曼光谱仪... 15

第三章 样品采集区域的地质背景... 17

3.1 冲绳海槽的地质概况... 17

3.2 冲绳海槽南部蘑菇帽热液区的概况... 19

3.3 蘑菇帽下倒置湖的特征... 20

3.4 冲绳海槽中部热液区概况... 22

第四章 样品与实验方法... 24

4.1 热液硫化物样品的制备... 24

4.2 拉曼光谱数据采集步骤... 25

4.3 拉曼光谱数据的处理... 26

4.4 电子探针、元素以及硫-铅同位素分析... 28

4.4.1 电子探针分析... 28

4.4.2 硫化物样品中的主-微量元素分析... 28

4.4.3 硫化物中的硫-铅同位素分析... 28

第五章 热液硫化物样品的显微拉曼光谱特征分析... 30

5.1 不同热液环境体系下硫化物样品中黄铜矿的拉曼光谱对比... 31

5.2 不同热液环境体系下硫化物样品中闪锌矿的拉曼光谱对比... 34

5.3 不同热液环境体系下硫化物样品中重晶石的拉曼光谱对比... 37

5.4 不同热液环境体系下硫化物样品中S8的拉曼光谱对比... 39

5.5 电子探针分析... 40

第六章 硫化物样品的地球化学特征... 44

6.1 三个地区硫化物样品的元素地球化学特征... 45

6.2 热液硫化物S-Pb同位素特征... 48

第七章 结论与展望... 53

7.1 结论... 53

7.2 展望... 54

参考文献... 55

附录1 黄铜矿拉曼光谱主峰的拉曼频移与半峰宽... 67

附录2 闪锌矿拉曼光谱主峰的拉曼频移与半峰宽... 69

附录3 重晶石拉曼光谱主峰的拉曼频移与半峰宽... 71

附录4 环八硫拉曼光谱主峰的拉曼频移与半峰宽... 73

附录5 三个地区硫化物样品的化学成分差异... 75

... 77

作者简历及攻读学位期间发表的学术论文与研究成果... 79

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/178354
专题中国科学院海洋研究所
推荐引用方式
GB/T 7714
马良. 深海气相流体中硫化物矿物组成与结构的拉曼光谱分析方法[D]. 中国科学院海洋研究所. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
深海气相流体中硫化物矿物组成与结构的拉曼(34841KB)学位论文 延迟开放CC BY-NC-SA浏览 2025-7-1后可获取
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[马良]的文章
百度学术
百度学术中相似的文章
[马良]的文章
必应学术
必应学术中相似的文章
[马良]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 深海气相流体中硫化物矿物组成与结构的拉曼光谱分析方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。