碳基催化材料的制备及抗菌防污机制的研究
王楠
学位类型博士
导师段继周
2020-09
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
关键词电催化氧还原,h2o2,活性氧,模拟酶催化,抗菌防污
摘要

海洋生物污损,是人类开发利用海洋以来一直需要面对与解决的问题。因此, 亟需一种绿色、环保、有效的海洋生物污损防护技术。H2O2 作为一种强氧化性、
低选择性的氧化剂,具有环境友好型、降解产物无污染的优点,被广泛的应用到 废水处理、化学氧化、生物制药和抗菌等领域。而原位电化学绿色合成H2O2,并 将H2O2合理利用在抗菌防污领域显得尤为重要。本文以碳基材料作为基底材料, 通过电催化两电子氧还原反应(ORR)合成H2O2,以碳基材料为模拟酶检测H2O2, 并以大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)和铜绿 假单胞菌(Pseudomonas aeruginosa)作为模式菌,将合成的H2O2进行杀菌抗污应 用。另外,为了防止过量的H2O2对金属的腐蚀,进一步利用卤化过氧化物模拟酶 将H2O2催化转化为次卤酸(HXO)。而HXO具有很强的杀菌性能,可用于海洋污损
生物防护方面的研究,且对于开发先进的海洋污损生物防污技术具有重要的指导
意义。具体研究内容如下: (1)GOx/MnCO3的制备及电催化2e- ORR产生H2O2用于抗菌的研究 通过简单的共沉淀/原位包覆法制备了不同比例氧化石墨烯气凝胶(GO)和 MnCO3的复合材料,即GOx/MnCO3复合材料。表征结果表明GOx/MnCO3复合材 料中GO均匀的包裹在 MnCO3表面,且具有很高的导电性和丰富的2e- ORR催化 活性位点。研究结果表明GO0.2/MnCO3 (G0.2M)具有最好的ORR催化活性,起始 电位为 0.635 VRHE,且在3.5% NaCl溶液中具有很高的H2O2催化选择性和电化学 稳定性。基于以上研究,在0.55 VRHE电位极化下,修饰在不锈钢表面的G0.2M 能够有效的防止细菌附着。其作用机理主要是由于电催化ORR产生H2O2和副反 应产生的•OH 和 O2-•,具有杀菌作用。这种有效的和环境友好的电催化方法为抗
菌防污应用提供了新的研究思路。 (2)3D C/CeO2多孔纳米材料的制备及模拟酶检测H2O2的研究 不同比例的硝酸铈盐和聚乙烯吡咯烷酮(PVP)通过泡制法合成三维碳掺杂二 氧化铈空心纳米结构框架(3D C/CeO2 HNFs)。3D C/CeO2 HNFs通过扫描电子显 微镜(SEM)、能量散色谱(EDS)、X 射线衍射谱(XRD)和 X 射线光电子能谱(XPS) 进行表征,结果表明3D C/CeO2 HNFs由小的CeO2单晶组成,并具有较大的比表 面积。3D C/CeO2 HNFs呈现出很好的过氧化物模拟酶活性,即在H2O2存在下,能催化氧化过氧化物酶底物 3,3’,5,5’-四甲基联苯胺(TMB)产生蓝色产物。这种方 法用于定量检测 H2O2,检测限为 5.2 nM,检测范围为 10 nM ~ 1 μM。 (3)碳掺杂氧化铈复合材料作为卤化过氧化物模拟酶在防污方面的应用
通过用碳球为模板利用共沉淀法合成碳掺杂氧化铈核壳结构材料 (CeO2@C),该材料形貌结构通过SEM、EDS、XRD和XPS进行表征。实验证明 CeO2@C能够催化溴化有机化合物表现出很好的卤化过氧化物酶活性,具有很 高的稳定性和重复利用性。CeO2@C催化H2O2氧化Br-生成相应的次溴酸 (HBrO)。产生的HBrO作用于 E. col、S. aureus 和 P. aeruginosa,具有很高的抗
菌活性。本研究提供了一种稳定、无毒、廉价的仿生材料,可用于抗菌、防污和
消毒等方面,是一种可持续性和绿色环保的防污方法。 (4)碳氮掺杂氧化铈复合材料作为卤化过氧化物模拟酶在防污方面的应用 采用水热合成法成功制备了碳氮掺杂氧化铈(CN-CeO2)复合材料。制备的复 合材料通过 SEM、EDS 和 XRD等进行表征。实验表明 CN-CeO2 复合材料具有
很好的次卤化物模拟酶活性,既能催化有机化合物发生溴化反应,并且在反应中 表现出很高的稳定性和重复利用性。在此基础上,CN-CeO2复合材料能够催化 H2O2 氧化 Br-生成相应的 HBrO,且产生的 HBrO具有很强的杀菌性能。本研究
引入了一种稳定、绿色和环境友好的模拟酶材料,在抗菌、防污和消毒等领域有
广泛的应用,为可持续、环保的防污问题提供了新的方法。

其他摘要

Marine biofouling is a problem that human beings have to face and solve since the exploitation and utilization of the ocean. Hydrogen peroxide (H2O2), as a strong oxidizing and low selectivity oxidant, has been widely used in wastewater treatment, chemical oxidation, bioligical pharmcy and antibacterial, due to its advantages of environmental friendliness and no pollution from degradation products. In situ electrochemical synthesis of H2O2 is one particularly important method and can be used in the field of antibacterial and antifouling. Herein, we use carbon-based materials as the substrate materials for electrocatalytic oxygen reduction reaction to H2O2. The production H2O2 is used for antibacterial and antifouling applications, and E. coli, S. aureus and P. aeruginosa are used as the model bacteria. In addition, the production H2O2 can be detected using the carbon-based materials as the simulated enzyme. In order to prevent the corrosion of metal by the excessive H2O2, it is further catalyzed to HXO by the haloperoxidase or to •OH according to the Fenton rection. As well we know, HXO and •OH have all strong bacterical properties, which can be used in the research on the biological protect of marine biofouling. It also has important guiding significance for development of advanced biological antifouling technology for marine biofouling. The specific research contents are as follows: (1) Electrocatalytic oxygen reduction to hydrogen peroxide by oxidized graphene aerogel supported cubic MnCO3 for antibacteria in neutral media We prepared the oxidized graphene aerogel supported cubic manganese carbonate composites (GOx/MnCO3) with different GO and MnCO3 ratio through a simple co-precipitation/in-situ coating method. The characterization results showed that the GOx/MnCO3 composites, with uniformly wrapping of GO on the surface of MnCO3 cubic, display high conductivity and abundant catalytic sites for 2-electron ORR. The G0.2M shows the best ORR catalytic performance, onset potential of 0.635 VRHE, high H2O2 production selectivity and high stability in 3.5% NaCl electrolyte. Based on this, G0.2M as oxygen reduction electrocatalyst, has good antibacterial effect at 0.55 VRHE on the stainless-steel. The antibacterial mechanism is mainly due to the electrocatalytic oxygen reaction of H2O2 and the side reaction of •OH and O2•-. This provides an impressive, effective and environmentally friendly electrochemical approach for antibacterial and antifouling applications. (2) A 3-dimensional C/CeO2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide Various 3-dimensional C/CeO2 hollow nanostructure frameworks (3D C/CeO2 HNFs) were synthesized by using a polymer blowing process, which is accelerated by adding a certain amount of cerium nitrate. Polyvinylpyrrolidone was used as the polymer. The resulting 3D C/CeO2 HNFs were characterized by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy. The 3D C/CeO2 HNFs possess a large specific surface area, and the CeO2 nanocrystals consist of a single phase. The 3D C/CeO2 HNFs display intrinsic peroxidase-like activity and can catalyze the oxidation of the peroxidase substrate 3,3’,5,5’-tetramethylbenzidine in the presence of H2O2 to produce a blue product. The method was applied to the quantification of H2O2 with a 5.2 nM detection limit. The analytical range is from 10 nM to 1 μM. (3) Investigating the properties of nano core-shell CeO2@C as haloperoxidase mimicry catalyst for antifouling applications In this work, we have successfully synthesized the core-shell structure of CeO2@C by using the carbon sphere as template through a simple coprecipitation method. The as-prepared CeO2@C is characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. The CeO2@C displays intrinsic haloperoxidase-like activity via catalyzing the bromination of organic signaling compoundsas well as high stability and recyclability. It can catalyze the oxidation of Br- with H2O2 to the corresponding hypobromous acid (HBrO); the produced HBrO exhibits strong antibacterial activity against Gram-negative (E. coli), Gram-positive (S. aureus) bacteria and typical marine (P. aeruginosa) bacteria. This study introduces a stable, non-poisonous and inexpensive biomimetic material for antibacterial, antifouling and disinfection applications based on novel sustainable and conservation methods. (4) C, N doped CeO2 nanoparticles as haloperoxidase mimicry for antifouling applications In this work, we have successfully synthesized the CN-CeO2 composites through a simple solid-state synthesis method. The CN-CeO2 composites are characterized by scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction spectroscopy. CN-CeO2 composites display intrinsic haloperoxidase-like activity via  catalyzing the bromination of organic signaling compounds, and present high stability and recyclability in catalytic reactions. On this basis, it can catalyze the oxidation of Br- with H2O2 to the corresponding hypobromous acid (HBrO), and the produced HBrO exhibits strong antibacterial activity. This study introduces a stable, green and environment friendly biomimetic material for antibacterial, antifouling and disinfection applications, which will provide a novel sustainable and conservation methods.

 

语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/164794
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
王楠. 碳基催化材料的制备及抗菌防污机制的研究[D]. 中国科学院海洋研究所. 中国科学院大学,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
王楠-毕业论文20200908.pdf(6203KB)学位论文 暂不开放CC BY-NC-SA
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王楠]的文章
百度学术
百度学术中相似的文章
[王楠]的文章
必应学术
必应学术中相似的文章
[王楠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。