IOCAS-IR  > 实验海洋生物学重点实验室
琼脂糖制备技术的研究
鞠豪
Subtype硕士
Thesis Advisor张全斌
2020-05
Degree Grantor中国科学院大学
Place of Conferral中国科学院海洋研究所
Abstract

琼胶是从石花菜属、鸡毛菜属、江蓠属、紫菜属、伊谷藻属等红藻中提取的一种天然水溶性高分子多糖聚合物,广泛应用于食品、医用材料、药物传递载体、日用化工和生物工程等不同领域。琼脂糖是从琼胶中制备的具有高凝胶特性的线性高分子非离子型多糖。琼脂糖主要由琼二糖(1,3连接的β-D-半乳糖和1,4连接的α-3,6-内醚半乳糖)重复单位构成。目前,国内所用的琼脂糖大部分来源于进口,进口琼脂糖价格高昂,有必要探索国内产业化制备琼脂糖的新方法。本文通过探究琼脂糖的制备技术,分析制备琼脂糖的凝胶强度、硫酸基含量等常规技术指标的变化,以期获得一种新型的琼脂糖制备技术。

通过凝胶强度、硫酸基含量和复溶性等指标,比较聚合氯化铝、聚丙烯酰胺、弱碱性苯丙烯系阴离子交换树脂、氯型强碱性阴离子交换树脂、氯型强碱性苯乙烯系阴离子交换树脂、DEAE-纤维素、壳聚糖、改性黏土、壳聚糖季铵盐、D900大孔弱碱性树脂、HP-20大孔树脂、XAD7HP树脂、AB-8型大孔树脂、X-5大孔树脂、D101大孔树脂作为吸附絮凝剂制备琼脂糖的方法,筛选出聚丙烯酰胺、弱碱性苯丙烯系阴离子交换树脂、DEAE-纤维素、X-5大孔树脂等可作为制备琼脂糖的絮凝剂。虽然这四种方法制备效果较好,但单一方法均未达到理想指标。在结合生产成本和絮凝剂工业化应用趋势的基础上,选择聚丙烯酰胺分别与聚合氯化铝和弱碱性苯丙烯系阴离子交换树脂联用进行进一步研究。

通过单因素试验获得聚合氯化铝-聚丙烯酰胺法最佳工艺条件:聚合氯化铝(PAC)法:料液比4:1,反应温度60°CPAC浓度0.4%,反应时间15 min;聚丙烯酰胺(PAM)法:料液比4:1,反应温度60°CPAM浓度0.8%,反应时间120 min。在此条件下制备的琼脂糖,其硫酸基含量为0.11%,凝胶强度为1 548 g/cm2,白度为88,透明度为62.81%,凝固温度为39.7°C,融化温度为84.7°C。这些指标符合生物技术级琼脂糖产品的质量要求。

通过单因素试验获得聚丙烯酰胺-弱碱性苯丙烯系阴离子交换树脂法工艺条件:聚丙烯酰胺工艺条件同上;弱碱性苯丙烯系阴离子交换树脂法:树脂与琼胶质量比为3:1,反应温度80°C,反应时间150 min。在此条件下制备的琼脂糖,其硫酸基含量为0.22%,凝胶强度为1 523 g/cm2,白度为88,透明度为58.88%,凝固温度为39.7°C,融化温度为87.6°C。这些指标符合普通琼脂糖产品的质量要求。

关键词:琼胶;琼脂糖;絮凝剂;阴离子交换树脂

Other Abstract

Agar is a natural water-soluble high-molecular polysaccharide polymer extracted from the cell walls of red algae such as Cauliflower genus, Feather genus, Echinacea genus, Porphyra genus, and Ilgium spp., and is widely used in food production, medical materials, different fields such as drug delivery vehicles, daily chemicals and biological engineering. Agarose is a linear high molecular non-ionic polysaccharide extracted from agar gel with high gel properties. Agarose consists mainly of agarose (1,3-linked β-D-galactose and 1,4-linked α-3,6-lactone galactose) repeating units. At present, most of the agarose used in China is imported, and the imported agarose is expensive, so it is necessary to explore a new method for the domestic industrial production of agarose. This paper explores different techniques for extracting agarose, and analyzes the changes in conventional technical indicators such as gel strength and sulfate content of agarose after purification in order to obtain a new type of agarose extraction technology.

By comparison, polyaluminum chloride, polyacrylamide, weakly basic styrene-acrylic anion exchange resin, chlorine-based strong basic anion exchange resin, chlorine-based strong basic styrene-based anion exchange resin, DEAE-cellulose resin, shell polymer Sugar, modified clay, chitosan quaternary ammonium salt, D900 macroporous weakly basic resin, HP-20 macroporous resin, XAD7HP resin, AB-8 macroporous resin, X-5 macroporous resin, D101 macroporous resin The gel strength, sulfate content, resolubility and other indicators of agarose prepared by other methods were compared to compare the extraction effects of different methods. Polyacrylamide, weakly basic styrene-acrylic anion exchange resin, DEAE-cellulose resin, X-5 macroporous resin, etc. were effective, but none of them reached the ideal index. DEAE-cellulose resin and X-5 macroporous resin are expensive, so based on the combination of production costs, polyacrylamide was selected in combination with polyaluminum chloride and weakly basic styrene-acrylic anion exchange resins for further research. .

The optimal process conditions of the polyaluminum chloride-polyacrylamide method were obtained through a single factor test: the polyaluminum chloride (PAC) method: a material-liquid ratio of 4:1, a reaction temperature of 60°C, a PAC concentration of 0.4%, and a reaction time of 15min; Polyacrylamide (PAM) method: material-liquid ratio 4:1, reaction temperature 60 °C, PAM concentration 0.8%, reaction time 120 min. The agarose extracted under this condition has a sulfate content of 0.11%, a gel strength of 1548 g/cm2, a whiteness of 88, a transparency of 62.81%, a solidification temperature of 39.7°C, and a melting temperature of 84.7°C. These indicators meet the quality requirements for biotech-grade agarose products.

The best process conditions for the polyacrylamide-weakly basic styrene-acrylic anion exchange resin method were obtained through a single factor test: the polyacrylamide process conditions are the same as above. Weak basic styrene-acrylic anion exchange resin method: mass ratio of resin to agar: 3: 1, reaction temperature 80° C, reaction time 150 min. The agarose extracted under this condition has a sulfate content of 0.22%, a gel strength of 1523 g/cm2, a whiteness of 88, a transparency of 58.88%, a solidification temperature of 39.7°C, and a melting temperature of 87.6°C. These indicators meet the quality requirements of ordinary agarose products.

Keywords: agar; agarose; flocculant; anion exchange resin

Language中文
Table of Contents

第 1 章 引言............................................................................................................1
1.1 琼胶.........................................................1
1.1.1 琼胶简介 ..................................................1
1.1.2 琼胶的起源 ................................................1
1.1.3 琼胶的应用 ...............................................2
1.2 琼脂糖........................................................5
1.2.1 琼脂糖的结构和理化性质 ....................................5
1.2.2 琼脂糖的应用 ..............................................7
1.3 琼脂糖制备方法的研究进展 .....................................13
1.4 选题意义和研究内容 ...........................................17
1.4.1 选题意义 .................................................17
1.4.2 研究内容 .................................................17
第 2 章 琼脂糖制备工艺筛选................................................................................... 19
2.1 实验材料与仪器..............................................................................................19
2.1.1 主要试剂...................................................................................................19
2.1.2 主要仪器...................................................................................................19
2.2 实验方法...........................................................................................................20
2.2.1 絮凝剂法制备琼脂糖工艺.......................................................................20
2.2.2 阴离子交换树脂法制备琼脂糖工艺.......................................................20
2.2.3 壳聚糖法制备琼脂糖工艺.......................................................................20
2.2.4 吸附树脂法制备琼脂糖工艺...................................................................21
2.2.5 凝胶强度测定...........................................................................................21
2.2.6 硫酸基含量测定-离子色谱法 ................................21
2.3 统计分析...........................................................................................................21
2.4 实验结果与讨论...............................................................................................22
2.4.1 不同制备工艺对琼脂糖凝胶强度的影响 .......................22
2.4.2 不同制备工艺对琼脂糖硫酸基含量的影响 .....................23
2.5 本章小结...........................................................................................................24
第 3 章 聚合氯化铝-聚丙烯酰胺联合法反应体系的优化 ....... 25
3.1 实验材料与仪器...............................................25
3.1.1 主要试剂 .................................................25
3.1.2 主要仪器 .................................................25
3.2 实验方法 .....................................................26
3.2.1 絮凝剂法制备琼脂糖工艺条件优化 ...........................26
3.2.2 琼脂糖理化性质测定........................................27
3.3 统计分析 .....................................................28
3.4 实验结果与讨论 ...............................................28
3.4.1 聚丙烯酰胺浓度对聚丙烯酰胺法制备效果的影响................28
3.4.2 反应温度对聚丙烯酰胺法制备效果的影响......................29
3.4.3 反应时间对聚丙烯酰胺法制备效果的影响......................30
3.4.4 PAC 和 PAM 的添加比例对絮凝剂联合法制备效果的影响..........31
3.4.5 聚合氯化铝反应时间对絮凝剂联合法制备效果的影响 ...........32
3.4.6 聚合氯化铝反应温度对絮凝剂联合法制备效果的影响 ...........34
3.4.7 絮凝剂联合法制备的琼脂糖理化性质检测......................35
3.4.8 琼脂糖红外谱图............................................38
3.4.9 琼脂糖固体核磁谱图........................................39
3.4.10 琼脂糖凝胶电泳...........................................40
3.5 本章小结 .....................................................41
第 4 章 絮凝剂-树脂联合法反应体系的优化 ................. 43
4.1 材料和方法...................................................43
4.1.1 主要试剂 .................................................43
4.1.2 主要仪器 .................................................43
4.2 试验方法.....................................................43
4.2.1 絮凝剂-树脂法制备琼脂糖工艺条件优化 ......................43
4.2.2 琼脂糖理化性质测定 .......................................44
4.3 统计分析.....................................................44
4.4 结果与分析...................................................44
4.4.1 絮凝剂法最优工艺确定 .....................................44
4.4.2 树脂使用量对阴离子交换树脂法制备效果的影响................44
4.4.3 反应时间对阴离子交换树脂法制备效果的影响 .................45
4.4.4 反应温度对阴离子交换树脂法制备效果的影响 .................46
4.4.5 琼脂糖的理化性质..........................................48
4.4.6 琼脂糖红外光谱............................................48
4.5 讨论 .........................................................49
4.6 本章小结.....................................................51
第 5 章 结论与创新点 .................................................................................................. 53
5.1 本文主要结论.................................................53
5.2 本文创新点...................................................54
参考文献 .........................................................55
致 谢.............................................................63
作者简历及攻读学位期间发表的学术论文与研究成果 .............65
 

Document Type学位论文
Identifierhttp://ir.qdio.ac.cn/handle/337002/164723
Collection实验海洋生物学重点实验室
Recommended Citation
GB/T 7714
鞠豪. 琼脂糖制备技术的研究[D]. 中国科学院海洋研究所. 中国科学院大学,2020.
Files in This Item:
File Name/Size DocType Version Access License
琼脂糖制备技术的研究.pdf(3715KB)学位论文 开放获取CC BY-NC-SAView
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[鞠豪]'s Articles
Baidu academic
Similar articles in Baidu academic
[鞠豪]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[鞠豪]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 琼脂糖制备技术的研究.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.