华南某成品油管道沉积物中微生物腐蚀行为研究
王正泉
学位类型硕士
导师李言涛
2020-05-12
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
关键词Mic 成品油管道 管线钢 沉积物
摘要

        成品油运输过程中管线容易产生沉积的局部地方常伴随着内腐蚀的发生。微生物腐蚀(MIC)是造成成品油管线内腐蚀的原因之一。为了研究成品油管道沉积物中微生物腐蚀行为,分析了成品油管道内不同位置的微生物群落径向分布特征,研究了X65、X70和X80级成品油管道内腐蚀行为及腐蚀特征,分析了管道易发生沉积处的腐蚀原因,探讨管道在内腐蚀情况下高钢级管线钢应用在成品油运输环境的可行性。同时,基于以上研究结果,分析了在成品油管道沉积物环境中腐蚀微生物协同作用下X65管线钢的腐蚀状态及原因。结论为控制成品油管道中的腐蚀性细菌提供依据,为成品油管道安全运行提供支撑。主要结论如下:

(1)在成品油管道沉积物模拟液中,X65、X70、X80管线钢的腐蚀趋势和腐蚀速率均随着浸泡时间的增加而增大;失重、腐蚀形貌和电化学分析结果表明,X80管线钢具有较好的性能和对环境的适应性,其好氧腐蚀反应慢于X65和X70管线钢。三种管线钢在模拟液中的腐蚀产物均为Fe2O3、FeOOH、FeCO3、FeS,腐蚀机理相同,但腐蚀速度不同,这是由于X80管线钢中含有较多的耐蚀性微量元素,且结构致密。针对目前国内外成品油管道用X80管线钢案例较少的情况,加快X80管线钢的发展,具有现实意义。

(2)对华南一条成品油管道内不同位置的微生物群落径向分布特征进行分析,9处采样点共有389个细菌菌属被检测出来,包含26门41纲389属。管道不同位置优势微生物物种不同,径向分布种类存在显著差异,且微生物种群丰富度与管道腐蚀程度相对应。环境的复杂性,造成成品油管道MIC的实际情况中往往要更加复杂。从管道径向分布来看,管道相对高程较低点的微生物群落多样性和丰富度明显高于相对高程较高点,与现场管道相对高程较低点腐蚀远比相对高程较高点严重相吻合,清管产物微生物群落分析结果也证明了这一点,进一步解释了管道低洼沉积处腐蚀严重的原因。

(3)不管是处于成品油管道相对高程的较高点还是较低点,5/7点钟方向的微生物有着最高的丰富度和多样性,6点钟方向次之,12点钟方向最少。其中,相对高程最低点5-7点钟方向沉积物中共检出14门19纲193属,有23个属相对丰度在1%以上,其中能引发MIC有12种。6点钟方向被沉积水覆盖,Sphingomonas、Sphingobium、Citrobacter、Lysinibacillus、Herbaspirillum、Dietzia可能是引起此处腐蚀加速的主要原因;管道5/7点钟方向处于水油界面区,腐蚀菌Brevundimonas与Brucella含量较高,与管道6点钟方向环境、重质水分、含氧量的差别会导致两点MIC腐蚀的机理有着一定的差别;而对于成品油能够浸没的12点钟方向,由于Pseudomonas对腐蚀的抑制作用,腐蚀较轻微。

(4) 对X65管线钢在天然稀释液体系(X65-Bacteria)和灭菌稀释液体系(X65-Asepsis)的OCP、EIS和极化曲线进行对比分析,发现在沉积物中细菌群落的协同作用下,X65管线钢的腐蚀速度加快;对X65管线钢表面的微生物膜生长情况和腐蚀产物微观形貌进行观察,发现细菌迅速在电极表面在大量繁殖和代谢产生胞外聚合物(EPS),在第3天形成致密的生物膜,生物膜主要由有机物和铁的氧化物组成。第7天生物膜内细菌密度、数量相比第3天变化并不显著,结合电化学分析结果认为,由于电极表面多孔、疏松以及腐蚀产物膜易脱落和微生物代谢产物的综合作用导致了第7天金属表面腐蚀速度加快;对最大腐蚀点进行寿命预测,利用有限元分析,计算出最大腐蚀点管道的寿命为5年,这与实际服役寿命一致。

其他摘要

        During the transportation of product oil, the local areas where pipelines are prone to deposits are often accompanied by internal corrosion. Microbiologically influenced corrosion (MIC) is one of the causes of corrosion in product oil pipelines. In order to study the microbiologically influenced corrosion behavior in sediments of product oil pipelines, the radial distribution characteristics of microbial communities at different locations in product oil pipelines were analyzed. The corrosion behavior and corrosion characteristics of X65, X70 and X80 grade oil product pipelines were studied.The cause of the corrosion in the pipeline where the deposit is prone to occur is analyzed, and the feasibility of the application of high-grade pipeline steel in the transportation environment of refined oil products under the condition of internal corrosion of the pipeline is discussed. At the same time, based on the above research results, the corrosion status and causes of X65 pipeline steel under the synergistic action of corrosive microorganisms in the sediment environment of product oil pipelines were analyzed. The conclusion provides a basis for controlling corrosive bacteria in product oil pipelines and supports the safe operation of product oil pipelines. The main conclusions are as follows.

(1)In the simulated fluid of product oil pipeline sediment, the corrosion tendency and corrosion rate of X65, X70, X80 pipeline steel increase with the increase of immersion time.The results of weightlessness, corrosion morphology and electrochemical analysis show that X80 pipeline steel has better performance and adaptability to the environment, and its aerobic corrosion reaction is slower than that of X65 and X70 pipeline steel.The corrosion products of the three pipeline steels in the simulated liquid are Fe2O3, FeOOH, FeCO3, and FeS. The corrosion mechanism is the same, but the corrosion rate is different. This is because X80 pipeline steel contains more corrosion-resistant trace elements and has a dense structure .In view of the fact that there are few cases of X80 pipeline steel for domestic and foreign product oil pipelines, it is of practical significance to accelerate the development of X80 pipeline steel.

(2)An analysis of the radial distribution characteristics of microbial communities at different locations in the product oil pipeline in southern China. A total of 389 bacterial genera were detected at 9 sampling sites, including 26 families, 41 classes and 389 genera. The dominant microbial species in different locations of the pipeline are different, and the radial distribution types are significantly different, and the microbial population richness corresponds to the degree of corrosion of the pipeline. The complexity of the environment makes the actual situation of the MIC of product oil pipelines often more complicated. From the perspective of the radial distribution of the pipeline, the diversity and richness of the microbial community at the relatively low elevation point of the pipeline is significantly higher than the relatively high elevation point, which is much more consistent with the corrosion of the on-site pipeline relative lower elevation point than the higher elevation .The results of the microbial community analysis of the pig products also proved this point, which further explained the cause of the serious corrosion in the low-lying sediments of the pipeline.

(3)Regardless of whether it is at the higher or lower point of the relative elevation of the product oil pipeline, microorganisms in the direction of 5/7 o'clock have the highest abundance and diversity, followed by the direction of 6 o'clock, and the least at 12 o'clock.Among them, 193 genera of 19 phyla of 19 classes were detected in the sediments at the lowest point of relative elevation 5-7 o'clock, and 23 genera with a relative abundance of more than 1%, of which 12 species can trigger MIC.Covered by sedimentary water at 6 o'clock, Sphingomonas, Sphingobium, Citrobacter, Lysinibacillus, Herbaspirillum, Dietzia may be the main causes of corrosion acceleration here.The pipeline is located in the water-oil interface area at 5/7 o'clock, and the corrosive bacteria Brevundimonas and Brucella are relatively high. The difference in the environment, heavy moisture, and oxygen content at 6 o'clock in the pipeline will lead to different mechanisms of MIC corrosion at two points.For the 12 o'clock direction where the product oil can be submerged, the corrosion is slight due to the inhibitory effect of Pseudomonas on corrosion.

4Comparative analysis of OCP, EIS and polarization curves of X65 pipeline steel in natural dilution system (X65-Bacteria) and sterilization dilution system (X65-Asepsis),and found that under the synergy of bacterial communities in the sediment, the corrosion rate of X65 pipeline steel was accelerated. The microbial film growth on the surface of X65 pipeline steel and the microscopic morphology of corrosion products were observed. It was found that bacteria rapidly multiply and metabolize on the electrode surface to produce extracellular polymers (EPS), forming a dense biofilm on the third day .The membrane is mainly composed of organic matter and iron oxide. The density and number of bacteria in the biofilm on the 7th day did not change significantly compared with the third day. Combined with the results of electrochemical analysis, it is believed that due to the porous, loose surface of the electrode, the corrosion product film is easy to fall off, and the combined action of microbial metabolites, the corrosion rate of the metal surface on the 7th day is accelerated.Use finite element analysis to predict the life of the largest corrosion point. The life of the pipeline with the largest corrosion point is calculated to be 5 years, which is consistent with the actual service life.

学科门类工学::生物工程
语种中文
目录

第1章 绪论... 1

1.1 前言... 1

1.2成品油管道内腐蚀... 2

1.2.1 成品油管道用钢及腐蚀情况... 2

1.2.2 成品油管道内腐蚀机理... 6

1.2.3引起成品油管道内腐蚀的因素... 7

1.3 成品油管道内微生物腐蚀... 9

1.3.1 成品油管道内常见腐蚀性微生物群落... 9

1.3.2微生物群落协同腐蚀研究... 9

1.3.3 微生物腐蚀机理... 11

1.3.4微生物腐蚀研究方法... 12

1.3.5 国内外成品油管道微生物腐蚀研究现状... 13

1.4 选题依据及研究内容... 14

1.4.1选题依据... 14

1.4.2研究内容... 15

第2章 样品制备及试验方法... 16

2.1 实验材料... 16

2.1.1 材料选取... 16

2.1.2样品收集与腐蚀介质... 17

2.2 实验部分... 22

2.2.1 微生物实验... 22

2.2.2 失重实验... 24

2.2.3 电化学测试实验... 25

2.2.4 腐蚀形貌和腐蚀产物分析... 25

2.3 有限元分析方法... 26

第3章 成品油管道沉积物中微生物群落特征分析... 27

3.1 不同成品油管段微生物群落径向分布特征... 28

3.1.1管道内壁空间位置上微生物群落分布差异... 28

3.1.2 α-多样性与β-多样性分析... 30

3.2 成品油管道内部可能引发MIC的微生物群落... 33

3.3 本章小结... 39

第4章 三种管线钢在无菌模拟液中的腐蚀行为研究及对比... 40

4.1 失重分析... 41

4.2 电化学分析... 41

4.2.1开路电位(OCP)... 41

4.2.2电化学阻抗谱(EIS)... 42

4.2.3极化曲线... 45

4.3微观形貌和腐蚀产物分析... 48

4.3.1金相组织和成分分析... 48

4.3.2腐蚀产物形貌分析... 48

4.3.3腐蚀产物成分分析... 50

4.3.4去除腐蚀产物后的腐蚀形态... 52

4.4 腐蚀行为... 52

4.5 本章小结... 55

第5章 管道原位稀释液微生物腐蚀行为研究... 56

5.1 微生物群落对比分析... 56

5.2 电化学分析... 59

5.2.1开路电位(OCP)... 59

5.2.2电化学阻抗谱(EIS)... 61

5.2.3极化曲线... 63

5.3 微观形貌和腐蚀产物分析... 64

5.4 荧光分析... 67

5.5有限元分析... 69

5.5.1管道数据... 69

5.5.2计算方法... 69

5.5.3 建模计算... 70

5.5.4计算结果... 72

5.6本章小结... 73

第6章 结论与展望... 75

6.1结论... 75

6.2 展望... 76

参考文献... 78

.... 88

作者简历及攻读学位期间发表的学术论文与研究成果... 89

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/164702
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
王正泉. 华南某成品油管道沉积物中微生物腐蚀行为研究[D]. 中国科学院海洋研究所. 中国科学院大学,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
王正泉-华南某成品油管道沉积物中微生物腐(29641KB)学位论文 暂不开放CC BY-NC-SA
王正泉-华南某成品油管道沉积物中微生物腐(29641KB)学位论文 暂不开放CC BY-NC-SA
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王正泉]的文章
百度学术
百度学术中相似的文章
[王正泉]的文章
必应学术
必应学术中相似的文章
[王正泉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。