银盐半导体材料的制备及其光催化防污性能的研究
徐会会
学位类型硕士
导师张杰 研究员
2019-05-07
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学硕士
学位专业海洋腐蚀与防护
关键词偏钒酸银 氧化锌 降解 光催化杀菌 防污
摘要

  海洋生物污损涉及了4000多种海洋生物,对海上工程设施造成了极大危害。海洋生物污损的防护方法多种多样,其中应用最为广泛的是商业防污涂料,该方法使用简便,效果良好,成本低,但由于该类涂料中含有杀生物剂,会对海洋生态平衡造成一定的危害。因此,开发环境友好型的防污涂料或者开发新型防污技术是刻不容缓的。

       本论文选择新型的光催化杀菌防污技术,以AgVO3和ZnO为基础材料,分别与Ag2MoO4和助催化剂AgBr复合,构建出具有不同的异质结结构的复合光催化剂,增强光捕获能力并延长光吸收区域,抑制电子和空穴对的重组,进而提高其光催化活性,获得具有优异的光催化活性的抗菌防污材料。根据降解、抗菌实验数据以及自由基捕获实验,评价复合材料的光催化抗菌防污活性,并提出相应的光催化反应机理,为开发稳定、高效、绿色环保的抗菌防污半导体材料提供了理论依据。具体研究内容如下:

   (1)利用水热法合成具有一维棒状结构的AgVO3纳米材料,然后通过原位生长法在其上负载颗粒状AgBr,成功制备出由AgVO3(501)晶面和AgBr(200)晶面紧密结合的AgBr/AgVO3复合材料。光催化降解实验表明,0.5 AgBr/AgVO3复合材料具有优异的光催化活性,在可见光照射下150 minRhB的降解率可达到92.3%。由光催化抗菌防污实验得出,在30 min内,使用0.5 AgBr/AgVO3异质结光催化剂超过99.9970E. coli P.aeruginosaS. aureus被杀死,说明0.5 AgBr/AgVO3复合材料具有优异的杀菌性能。经过6次杀菌循环实验后,0.5 AgBr/AgVO3复合材料P.aeruginosa的抗菌率没有明显降低表明该复合材料具有良好的可重复使用性根据自由基捕获实验以及上述数据,提出复合材料光催化机理。

   (2)利用水热法和原位生长法制备了具有不同摩尔比的AgBr/Ag2MoO4@AgVO3光催化剂,研究AgBr和Ag2MoO4的不同负载量对所制备的复合材料的光催化活性的影响。结果表明1.0 AgBr/Ag2MoO4@AgVO3光催化剂对RhB溶液具有好的降解效果,降解率达到了94.9%。在光催化抗菌防污实验中,1.0 AgBr/Ag2MoO4@AgVO3 光催化剂对三种模式菌的杀菌率均超过

99.99%在经过5个循环后,该催化剂对铜绿假单胞菌的抗菌率依然达到98.5942%,表明该材料具有良好的抗菌性以及稳定性。

   (3)利用水热法和原位生长法合成具有Z型结构的AgBr/Ag2MoO4@ZnO复合材料,通过XRD,SEM,XPS和HRTEM等一系列表征手段对所制备的复合材料的形貌,组成和结构等进行表征。选择环丙沙星(CIP)和罗丹明B(RhB)作为目标物进行光降解实验,以揭示制备的复合材料的光催化活性。光催化降解实验表明,0.5 AgBr/Ag2MoO4@ZnO光催化剂在可见光照射下对环丙沙星的降解率为80.5,表现出好的光催化降解活性。在光照60 min后,超过99.999%的E. coliP.aeruginosaS. aureus被杀灭。此外在5循环杀菌实验后,该催化剂依旧表现出良好的稳定性,说明0.5 AgBr/Ag2MoO4@ZnO复合光催化剂具有优异的光催化活性通过自由基捕获实验提出复合材料的光催化反应机理。

其他摘要

    Marine biofouling causes great damage to offshore engineering facilities, involving more than 4,000 species of marine life. There are many ways to protect metals from biofouling in marine and the most widely used one is commercial antifouling coating. The method is simple and low cost with excellent efficiency. However, due to the presence of biocides in these coatings, the balance of marine biological system is being damaged. Therefore, it is imperative to develop environmental friendly antifouling coatings or new antifouling technologies.

    In this paper, a new type of photocatalytic sterilization and antifouling technology was selected. AgVO3 and ZnO were used as the substrate materials, and they were combined with Ag2MoO4 and AgBr to form composite photocatalysts with different heterojunction structures to enhance light trapping ability, extend the light absorption area, reduce the recombination of electrons and hole pairs, improve their photocatalytic activity and obtain excellent antibacterial antifouling materials. According to the degradation, antibacterial experimental data and free radical trapping experiments, the photocatalytic antibacterial and antifouling activities of the composites were evaluated, and the corresponding photocatalytic reaction mechanism was proposed, which will provide a theoretical basis for the development of stable, efficient and environmental friendly antibacterial antifouling semiconductor materials. The specific research contents were as follows:

    (1) The AgVO3 nanomaterial with one-dimensional rod-like structure was synthesized by hydrothermal method, and then AgBr was loaded on the surface by in-situ growth method. The (501) crystal plane of AgVO3 and the (200) crystal plane of AgBr were successfully combined to form the AgBr/AgVO3 composite. The photocatalytic degradation experiments showed that the 0.5 AgBr/AgVO3 composite had excellent photocatalytic activity, and the degradation rate of RhB reached 92.3% after 150 min under visible light irradiation. In the photocatalytic antibacterial antifouling experiment, it was found that more than 99.9970% of E. coli, P. aeruginosa and S. aureus were killed using 0.5 AgBr/AgVO3 heterojunction photocatalyst within 30 min, indicating 0.5 AgBr/AgVO3 composite had excellent antibacterial properties. After 6 cycles of sterilization experiments, The antibacterial rate of 0.5 AgBr/AgVO3 composite to P.aeruginosa did not decrease significantly, indicating that the composite had good reusability. According to the free radical trapping experiment and the above data, the photocatalytic mechanism of the composites was proposed.

    (2) AgBr/Ag2MoO4@AgVO3 photocatalysts with different molar ratios were prepared by hydrothermal method and in situ growth method. The effects of different loadings of AgBr and Ag2MoO4 on the photocatalytic activity of the prepared composites were investigated. The results showed that 1.0 AgBr/Ag2MoO4@AgVO3 photocatalyst had the best degradation effect on RhB solution, and the degradation rate reached 94.9%. In the photocatalytic antibacterial and antifouling experiment, the antibacterial rate of 1.0 AgBr/Ag2MoO4@AgVO3 photocatalyst to all three model bacteria exceeded 99.99%. After 5 cycles, the antibacterial rate of the catalyst against P. aeruginosa still reached 98.5942%, indicating that the material had good antibacterial properties and stability.

    (3) The AgBr/Ag2MoO4@ZnO composites with Z-type structure were synthesized by hydrothermal method and in-situ growth method. The morphology, composition and structure of the prepared composites were characterized by XRD, SEM, XPS and HRTEM. The photodegradation experiments were carried out by selecting ciprofloxacin (CIP) and rhodamine B (RhB) as targets to reveal the photocatalytic activity of the prepared composites. The photocatalytic degradation experiments showed that the degradation rate of CIP by 0.5 AgBr/Ag2MoO4@ZnO photocatalyst was 80.5% under visible light irradiation, showing good photocatalytic activity. After 60 min of illumination, more than 99.999% of E. coli, P. aeruginosa and S. aureus were killed. In addition, after 5 cycles of sterilization experiments, the catalyst still showed good stability, indicating that the 0.5 AgBr/Ag2MoO4@ZnO composite photocatalyst had excellent photocatalytic activity. The photocatalytic reaction mechanism of the composites was proposed by free radical trapping experiments.

学科领域海洋科学
学科门类理学::海洋科学
页数80
语种中文
目录

第一章 绪论 1

1.1 研究背景 1

1.1.1 海洋生物污损概述 1

1.1.2 海洋生物污损防护 1

1.2 光催化降解及杀菌防污技术 3

1.2.1 光催化材料 3

1.2.2 提高半导体光催化活性的方法 4

1.2.3 AgVO3简介 5

1.2.4 ZnO简介 7

1.2.5 Ag2MoO4AgBr简介 8

1.3 选题依据及研究内容 9

1.3.1 选题依据 9

1.3.2 研究内容 10

第二章 实验部分 13

2.1 材料与试剂 13

2.2 实验仪器 14

2.3 材料表征方法 14

2.3.1 X射线衍射表征(XRD 14

2.3.2 扫描电子显微镜表征(SEM 14

2.3.3 透射电子显微镜表征(TEM 15

2.3.4 紫外-可见漫反射表征(UV-DRS 15

2.3.5 X射线光电子能谱表征(XPS 15

2.4 光催化降解实验 16

2.4.1 光催化实验装置 16

2.4.2 光催化降解实验 16

2.5 光催化抗菌防污实验 17

2.5.1 细菌培养基的配制 17

2.5.2 材料与器具的准备 18

2.5.3 细菌悬液的制备 18

2.5.4 光催化杀菌实验 19

2.5.5 自由基捕获实验 19

第三章 AgBr/AgVO3材料的制备及其光催化防污性能的研究 21

3.1 引言 21

3.2 实验部分 22

3.2.1 材料的制备 22

3.2.2 AgBr/AgVO3复合材料表征 23

3.3 结果与讨论 23

3.3.1 复合材料的X射线衍射分析 23

3.3.2 AgBr/AgVO3复合材料扫描电子显微镜分析 24

3.3.3 AgBr/AgVO3复合材料TEM分析 25

3.3.4 AgBr/AgVO3复合材料XPS以及UV-DRS分析 26

3.3.5 光催化活性测试 28

3.3.6 光催化杀菌防污测试 29

3.3.7 光催化的稳定性实验 30

3.3.8 光催化抗菌防污机理 31

3.4 本章小结 33

第四章 AgBr/Ag2MoO4@AgVO3材料的制备及其光催化防污性能的研究 35

4.1 引言 35

4.2 实验部分 36

4.2.1 材料的制备 36

4.2.2 AgBr/Ag2MoO4@AgVO3纳米复合材料表征 37

4.3 结果与讨论 37

4.3.1 光催化剂的X射线衍射分析 37

4.3.2 光催化剂的形貌表征 38

4.3.3 光催化降解活性 40

4.3.4 光催化杀菌防污测试 41

4.4 本章小结 43

第五章AgBr/Ag2MoO4@ZnO材料的制备及其光催化防污性能研究 45

5.1 引言 45

5.2 实验部分 46

5.2.1 材料的制备 46

5.2.2 AgBr/Ag2MoO4@ZnO复合材料表征 47

5.3 结果与讨论 47

5.3.1 复合材料的X射线衍射分析 48

5.3.2 AgBr/Ag2MoO4@ZnO复合材料扫描电子显微镜分析 49

5.3.3 AgBr/Ag2MoO4@ZnO复合材料TEM分析 49

5.3.4 AgBr/Ag2MoO4@ZnO复合材料表面元素分析 50

5.3.5 光催化活性测试 51

5.3.6 光催化杀菌防污测试 55

5.3.7 光催化抗菌防污机理 57

5.4 本章小结 59

第六章 结论与展望 61

6.1 结论 61

6.2 创新点 62

6.3 展望 62

参考文献 65

77

作者简历及攻读学位期间发表的学术论文与研究成果 79

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/156857
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
徐会会. 银盐半导体材料的制备及其光催化防污性能的研究[D]. 中国科学院海洋研究所. 中国科学院大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
徐会会.pdf(16637KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[徐会会]的文章
百度学术
百度学术中相似的文章
[徐会会]的文章
必应学术
必应学术中相似的文章
[徐会会]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 徐会会.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。