IOCAS-IR  > 海洋环流与波动重点实验室
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
Li, Shan1,2; Zhang, Shaoqing3,4; Liu, Zhengyu5; Lu, Lv6; Zhu, Jiang2; Zhang, Xuefeng7; Wu, Xinrong7; Zhao, Ming8; Vecchi, Gabriel A.9; Zhang, Rong-Hua4,10; Lin, Xiaopei3,4
2018-04-01
发表期刊JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
ISSN1942-2466
卷号10期号:4页码:989-1010
摘要Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
关键词parameter estimation data assimilation coupled climate model convection
DOI10.1002/2017MS001222
语种英语
资助项目CMOST National Key Research & Development projects[2017YFC1404100] ; CMOST National Key Research & Development projects[2017YFC1404104] ; Chinese National Natural Science Foundation of China[41775100] ; China Postdoctoral Science Foundation[2016M601103] ; China Scholarship Council ; US NSF[1656907] ; [2017YFA0603801] ; [NSFC41630527]
WOS研究方向Meteorology & Atmospheric Sciences
WOS类目Meteorology & Atmospheric Sciences
WOS记录号WOS:000432002600006
出版者AMER GEOPHYSICAL UNION
引用统计
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/154690
专题海洋环流与波动重点实验室
作者单位1.Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies LaCOAS, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Atmospher Sci, ICCES, Beijing, Peoples R China
3.Ocean Univ China, Minist Educ, Key Lab Phys Oceanog, Qingdao, Peoples R China
4.Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China
5.Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
6.Ocean Univ China, Coll Atmosphere & Oceanog, Qingdao, Peoples R China
7.Natl Marine Data & Informat Serv, Tianjin, Peoples R China
8.GFDL NOAA, Princeton, NJ USA
9.Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
10.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
推荐引用方式
GB/T 7714
Li, Shan,Zhang, Shaoqing,Liu, Zhengyu,et al. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation[J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS,2018,10(4):989-1010.
APA Li, Shan.,Zhang, Shaoqing.,Liu, Zhengyu.,Lu, Lv.,Zhu, Jiang.,...&Lin, Xiaopei.(2018).Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation.JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS,10(4),989-1010.
MLA Li, Shan,et al."Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation".JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 10.4(2018):989-1010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Shan]的文章
[Zhang, Shaoqing]的文章
[Liu, Zhengyu]的文章
百度学术
百度学术中相似的文章
[Li, Shan]的文章
[Zhang, Shaoqing]的文章
[Liu, Zhengyu]的文章
必应学术
必应学术中相似的文章
[Li, Shan]的文章
[Zhang, Shaoqing]的文章
[Liu, Zhengyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。