IOCAS-IR  > 海洋生态与环境科学重点实验室
人类活动影响下胶州湾的大气干湿沉降与营养物质收支
其他题名Study on the atmospheric dry and wet deposition and budgets of nutrient elements in the Jiaozhou Bay, North China, under the enhanced impacts of human activities
邢建伟
学位类型博士
导师宋金明研究员
2017-05-10
学位授予单位中国科学院大学
学位授予地点北京
学位专业环境科学
关键词生源要素 痕量元素 大气沉降 收支 胶州湾
其他摘要    伴随社会经济的迅猛发展,大气人为污染物质的排放也不断增多,它们可以通过沉降的方式进入海洋。因此,大气沉降作为陆源人为污染物质输送入海的重要途径之一,受到了国内外学者、政府的广泛关注。本学位论文聚焦我国北方地区受人类活动影响显著的典型半封闭海湾——胶州湾,系统研究了其化学组分的大气干湿沉降、生态效应与营养物质收支。本研究通过采集胶州湾2015年6月~2016年5月的气溶胶及大气干、湿沉降样品,聚焦高强度人类活动影响下近海半封闭性海湾主要生源要素(N、P、Si、S)及溶解态痕量元素(Al、Fe、Mn、Co、Zn、Se、Pb、Cd、Cr)的大气干、湿沉降(包括酸沉降)通量及其影响因素,综合运用多种方法(统计分析、富集因子、主成分分析以及气团后向轨迹模型)解析其来源及大气传输过程。同时,着重从大气营养物质沉降对海洋初级生产力、营养盐结构影响的角度,系统探讨了大气沉降对胶州湾生态系统的影响。在此基础上,系统综合大气沉降、河流输入、点源排污、海水养殖、沉积物—水界面扩散释放以及与黄海的水交换等营养物质收支过程,评估其收支状况,阐明胶州湾水体的营养物质源/汇格局。获得了如下的系统新认识:
1)胶州湾大气N污染极为严重,气象条件(降水量、风向)、当地自然/人为污染物的排放强度以及远距离传输是影响大气营养盐干、湿沉降浓度及通量的主要因素;气溶胶水溶性营养盐(NPSi)的干沉降速率呈现较为明显的月际变化;由于不同营养盐成分干沉降速率的较大差异,导致气溶胶中各营养盐浓度的比例与干沉降中相应成分的比例之间存在较大差异;气溶胶以及大气干、湿沉降中NPSi比例严重失衡,有机态NP的大气沉降不容忽视;干、湿沉降,尤其是强降水会对表层海水的生源要素产生强力加富作用,促进浮游植物生长以及初级生产力的提高、改变表层水体的营养盐结构,进而对胶州湾浮游植物群落结构和粒级结构产生影响,加剧胶州湾生态系统的失衡。
    胶州湾大气各形态营养盐的干、湿沉降通量分别为NH4-N(29.4、92.8)、NO3-N(29.9、54.5)、NO2-N(0.058、0.427)、DON(15.4、47.5)、PO4-P(0.099、0.274)、DOP(0.165、0.448)、DSi(8.48、1.73)mmol·m-2·yr-1;除DSi之外,湿沉降均占据主导地位。运用干沉降模型间接估算的胶州湾气溶胶NH4-N、NO3-N、NO2-N、DON、PO4-P、DOP以及DSi的干沉降速率分别为0.17 ± 0.11、0.35 ± 0.20、0.34 ± 0.25、0.30 ± 0.22、0.43 ± 0.28、0.91 ± 0.60和1.31 ± 1.27 cm·s-1,季节变化较为明显。干、湿沉降均以无机氮为主,DON在N干、湿沉降中的比例分别为20.6%和24.3%,而DOP在P干、湿沉降中均占优势地位(62.5%和62.0%),表明有机态N、P的大气沉降不容忽视。胶州湾大气N、Si、P的主要来源分别为农业活动、土壤沙尘、人为排放与自然源的混合源。气团后向轨迹分析显示,来自西北(34.7%)和东南方向(42.8%)的降水气团对湿沉降的影响较大,而对于干沉降,来自西北方向气团(57.9%)的影响占据绝对主导地位。由于胶州湾表层海水的P限制,根据Redfield比值估算的大气沉降输入的P所支持的新生产力在春、夏、秋、冬季分别为1.94,1.15,1.86,1.15 mg C·m-2·d-1。尽管大气沉降所输入的P支持的平均新生产力较低,但雨季短时强降雨带来的大量营养物质的输入所支持的新生产力最高可达胶州湾平均初级生产力的25%。此外,干、湿沉降中极高的N:P比和极低的Si:N比加之NH4-N的绝对优势地位,会改变表层水体的营养盐结构,恶化水体的P限制和Si限制,这可能是近年来胶州湾浮游植物群落结构和粒级结构改变以及优势种演替的一个重要原因。
2)胶州湾大气降水明显酸化,加之较高的电导率和SN沉降通量,揭示了该区域处于较为严重的大气二次污染过程;SO42-NO3-是主要的致酸成分,而NH4+nss-Ca2+是主要的酸性中和成分,Ca2+的严重缺乏可能是导致雨水酸性较强的一个重要原因;人为源是胶州湾大气水溶性离子的主导源。
    胶州湾大气降水的pH范围为3.84~6.91,雨量加权均值(VWM)低至4.77,酸雨频率高达71.4%。NH4+、SO42-、NO3-、Ca2+和Cl-是主要的大气水溶性无机离子成分,其占比在气溶胶和雨水中均超过80%。NH4+超过Ca2+成为最主要的阳离子,而SO42-则为最主要的阴离子。S、N的大气沉降通量分别为20.17和28.92 kg·ha-1·yr-1,均以湿沉降为主。尽管目前胶州湾大气降水仍为硫酸型,但随着大气NOx排放的增强以及对SO2排放的严格控制,酸雨类型正逐渐向硝酸型转化。定量分析结果表明,海洋源、地壳源以及人为源对胶州湾大气化学成分的贡献率分别为28.7%、14.5%和56.8%。鉴于海洋浮游植物对大气SO42-的贡献被忽视,其海洋源可能被低估。
3)胶州湾大气溶解态痕量元素浓度和沉降通量处全球中等水平,受复杂的气象条件(降水量、风速、风向)和污染物排放强度的影响,干、湿沉降痕量元素呈现较为明显的月际变化;胶州湾大气溶解态AlFe主要为地壳源,而其余7种元素主要是人为源,来自西北方向的气团/云团对研究区域大气溶解态痕量元素的浓度起主导作用;MnZnCo具有较高的干沉降速率,而典型人为源元素PbCdCr的干沉降速率较低;短时强降雨会对表层海水的痕量元素产生加富作用,污染海洋环境,进而对浮游植物生长同时产生营养和毒害作用。
    胶州湾大气水溶性痕量元素的干、湿沉降通量分别为Al(19.3、29.2)、Fe(10.2、14.2)、Mn(21.6、24.2)、Co(0.154、0.090)、Zn(101.5、24.1)、Se(0.862、0.725)、Pb(0.175、2.21)、Cd(0.035、0.131)、Cr(0.083、0.669)mg·m-2·yr-1,除Co、Zn、Se之外,均以湿沉降为主。利用干沉降模型间接估算的上述9种溶解态痕量元素的干沉降速率分别为1.29 ± 1.60、1.27 ± 1.66、2.33 ± 1.48、1.67 ± 0.94、1.98 ± 2.22、0.51 ± 0.29、0.12 ± 0.13、0.15 ± 0.12、0.17 ± 0.10 cm·s-1,表现出一定的季节变化特征。除Al、Fe之外,地壳源对其它痕量元素的贡献几乎可以忽略;来自西北方向的气团/云团在调查期间含有相对较高的溶解态痕量元素浓度,且发生频率最高,因此对调查区域大气溶解态痕量元素浓度起主导作用。干、湿沉降输入的溶解态Fe可以支持的生物固氮量为4.5×108 ~ 94.9×108 g N·yr-1,可占胶州湾总生物固氮量的4.9% ~ 100%。
4)在胶州湾营养物质收支中,相对于河流输入、点源排污等陆源输入以及海水养殖排泄,大气沉降输入的营养物质占比较低,但与往年相比有所提高,表明大气沉降对陆源物质输送入海的作用逐渐增强;南黄海与湾内的水交换是胶州湾DOPCr的重要来源;除Zn以外,胶州湾水体整体表现为各类营养盐及痕量元素的汇;由于留存于水体中的N:P比较高,胶州湾今后仍可能长期处于P限制状态;量化胶州湾营养盐及痕量元素的各种来源/归宿以及输入/输出通量,对于评估胶州湾水体的富营养化特征和环境演变趋势有重要意义。
    近年来大气干湿沉降在胶州湾营养物质总外源输入中的比重有所上升;对于个别痕量元素如Zn,大气沉降也占据较大比例,表明大气沉降是胶州湾痕量元素的一个重要来源,且随着人为活动的增强,其近年来的输入作用有所增强。通过一年的水交换,留存于水体中可用于浮游植物初级生产的DIN、DIP和DSi分别为193×109 mol、2.04×109 mol和106×109 mol,N:P比接近100,而Si:N比接近0.5,因此可以预测,在没有大的环境演变前提下,胶州湾水体可能将长期保持P限制,而Si限制的状况将会有所减轻。
    本研究全面探讨了胶州湾生源要素及痕量元素的大气干、湿沉降特征及其来源和生态环境效应,进一步加深了对人为影响下胶州湾营养元素生物地球化学循环过程的理解,同时为深入研究半封闭型海湾对人类活动影响日益增强的响应过程及机制提供了数据支持和理论依据。; With the rapid development of economy in the world, more and more anthropogenic pollutants have been emitted into the atmosphere, and most of them can enter into the sea through atmospheric deposition. Thus, as one of the important pathways for terrigenous human-induced pollutants transported into the ocean, atmospheric deposition has received more and more attentions from the researchers and governments around the world. In this study, we focused on the Jiaozhou Bay, a typical semi-enclosed bay located in the north of China, which suffered from intense human activities, and systematically analyzed the atmospheric dry and wet depositions of the chemical components, ecological effects and the budgets of nutrient elements. Based on the aerosols and atmospheric dry and wet deposition samples collected in the Jiaozhou Bay from June 2015 to May 2016, we analyzed the atmospheric dry and wet deposition (including acid deposition) fluxes and influencing factors of the main biogenic elements (nitrogen, phosphorus, silicon and sulfur) and dissolved trace elements (aluminum, iron, manganese, cobalt, zinc, selenium, lead, cadmium and chromium) in the semi-enclosed bay under the high-intensitive human activities. Meanwhile, their sources and atmospheric transmission processes were studied by means of multi-methods such as statistical analysis, enrichment factors, principal component analysis and backward air-mass trajectory. Then, the effects of atmospheric nutrient deposition on the Jiaozhou Bay ecosystem were systematically evaluated in terms of marine primary productivity and nutrient structures. On that basis, the budgets and pattern of “source” and “sink” for nutrient elements in the Jiaozhou Bay seawater were assessed combined atmospheric deposition, river inputs, point source pollution, mariculture, the diffusion and releases processes at the sediment-water interfere and the water exchange with the South Yellow Sea. A series of new results have been obtained as follows:
1) The nitrogen pollution levels in the Jiaozhou Bay were very serious, and meteorological conditions (rainfall, wind direction), the emission intensities of local natural and anthropogenic pollutants together with the long-range transport of them constituted the main influencing factors of concentrations and deposition fluxes of atmospheric nutrients. There were obvious monthly various for dry deposition velocities of aerosol water-soluble nutrient species (nitrogen, phosphorus and silicon). Owing to the differences of dry deposition velocities between different nutrient species, there were evident differences for the percentages of them in aerosols and dry deposition samples. The ratios between nitrogen, phosphorus and silicon in aerosols and dry and wet deposition samples were unbalanced badly, and the atmospheric depositions of organic nitrogen and phosphorus species cannot be ignored. Atmospheric dry and wet depositions, especially the heavy rainfall would greatly elevated the nutrient concentrations of surface water of Jiaozhou Bay, facilitated the growth of phytoplankton and promoted the primary productivity, as well as changed the nutrient structures of surface water and then exerted effects on the community structures and size-fractionated structures of phytoplankton. All of these would aggravate the unbalance conditions of Jiaozhou Bay ecosystem.
The dry deposition fluxes of NH4-N, NO3-N, NO2-N, DON, PO4-P, DOP and DSi were 29.4, 29.9, 0.058, 15.4, 0.099, 0.165 and 8.48 mmol·m-2·yr-1, respectively, while the wet deposition fluxes for them were 92.8, 54.5, 0.427, 47.5, 0.274, 0.448 and 1.73 mmol·m-2·yr-1, respectively. For the most of nutrient species except DSi, the wet deposition fluxes exceeded dry fluxes. The indirectly calculated dry deposition velocities for NH4-N, NO3-N, NO2-N, DON, PO4-P, DOP and DSi were 0.17 ± 0.11、0.35 ± 0.20、0.34 ± 0.25、0.30 ± 0.22、0.43 ± 0.28、0.91 ± 0.60和1.31 ± 1.27 cm·s-1 respectively, with obvious seasonal variations. Inorganic nitrogen was the dominating forms of dry and wet deposition, and the percentages of DON in dry and wet depositions of nitrogen were 20.6% and 24.3%, respectively, while for the dry and wet depositions of phosphorus, DOP was the main form and their percentages were 62.5% and 62.0%, respectively, implying it was negligible for the atmospheric depositions of organic nitrogen and phosphorus. The primary sources of atmospheric nitrogen, silicon and phosphorus in Jiaozhou Bay were agricultural activities, soil dusts and the mixing sources combined with anthropogenic emissions and natural source, respectively. The results from the backward air-mass analysis indicated that the precipitation air-masses originated from northwest (34.7%) and southeast (42.8%) directions have major effects on wet depositions of nutrient components, while for dry deposition, the effect of air-masses deriving from northwest direction (57.9%) was principal. Due to the phosphorus limitation of Jiaozhou Bay, according to the Redfield ratios, the new productivities supported by atmospheric phosphorus inputs in spring, summer, autumn and winter were calculated to be 1.94, 1.15, 1.86 and 1.15 mg C·m-2·d-1, respectively. Although the average new productivities induced by atmospheric phosphorus were low, the largely phosphorus inputs from short-term heavy rainfall happened in the rainy season can support a high new productivity, which can reach up to ~25% of the average primary productivity in this season. In addition, the extremely high N:P ratios and extremely low Si:N ratios in dry and wet depositions together with the fact that NH4-N was the principal nutrient species in atmospheric deposition jointly indicated that atmospheric deposition would change the nutrient structure of the surface water of Jiaozhou Bay, worsen the conditions of phosphorus and silicon limitation in Jiaozhou Bay. That, we concluded, may be one of the possible reasons for the changes of community structure and size-fractioned structure of phytoplankton as well as the succession of phytoplankton dominant species in the Jiaozhou Bay in recent years.
2) The precipitation in the Jiaozhou Bay were seriously acid, together with the higher electrical conductivity and atmospheric deposition fluxes of nitrogen and sulfur, collectively suggested that Jiaozhou Bay have been undergoing severe atmospheric secondary pollution. SO42- and NO3- were the main acidic components, while NH4+ and nss-Ca2+ were the primary alkaline components. The serious lacking of Ca2+ may be responsible for the severe acid rain condition in the Jiaozhou Bay. The principal sources of atmospheric water-soluble ions in Jiaozhou Bay were anthropogenic activities.
The pH range of precipitation in the Jiaozhou Bay were from 3.84 to 6.91, the Volume-weighted Mean low to 4.77 and the frequency of acid rain reached up to 71.4%. NH4+, SO42-, NO3-, Ca2+, Cl- constituted the main body of atmospheric water-soluble inorganic ions with the percentages in aerosols and precipitation over 80%. NH4+ exceeded Ca2+ and became the dominant cations, while SO42- was the most abundant anions. The atmospheric deposition fluxes of sulfur and nitrogen were 20.17 and 28.92 kg·ha-1·yr-1, respectively, and wet deposition constituted the main body for both of them. Although the currently acid rain in Jiaozhou Bay was still sulfur acid type, it has been changing into nitric acid type with the enhancing of atmospheric NOx and strictly controlling of SO2 around the Jiaozhou Bay. Quantitative analysis showed that the relative contribution rates of marine, crust and anthropogenic sources were 28.7%, 14.5% and 56.8%, respectively. Considered the contribution from marine phytoplankton to atmospheric SO42- had been neglected, the marine sources of SO42- may be underestimated in the previous studies.
3) The concentrations and deposition fluxes of atmospheric dissolved trace elements in the Jiaozhou Bay were moderate on the global scale, which showed obvious monthly variations under the impacts from complex weather conditions (rainfall , wind speed, wind direction). The dominating origins of atmospheric dissolved aluminum and iron were the crustal dusts, while the main sources of the remaining 7 trace elements were anthropogenic sources. The air-masses originating from the northwest direction exerted the greatest impacts on the concentrations and wet depositions of atmospheric dissolved trace elements in the study area. The dry deposition velocities of atmospheric manganese, zinc, cobalt were relatively high, while for the typical anthropogenic elements such as lead, cadmium and chromium have relatively low dry deposition velocities. The short-term heavy rainfall would increase the concentrations of dissolved trace elements in the surface water of Jiaozhou Bay, contaminate the aquatic environments and then exert both trophism and toxic effects on the growth of phytoplankton.
The dry deposition fluxes of atmospheric dissolved trace elements were aluminum 19.3 mg·m-2·yr-1, iron 10.2 mg·m-2·yr-1, manganese 21.6 mg·m-2·yr-1, cobalt 0.154 mg·m-2·yr-1, zinc 101.5 mg·m-2·yr-1, selenium 0.862 mg·m-2·yr-1, lead 0.175 mg·m-2·yr-1, cadmium 0.035 mg·m-2·yr-1 and chromium 0.083 mg·m-2·yr-1. The wet deposition fluxes of the above trace elements were 29.2, 14.2, 24.2, 0.090, 24.1, 0.725, 2.21, 0.131 and 0.669 mg·m-2·yr-1, respectively. For most of these trace elements except for cobalt, zinc and selenium, the wet fluxes all exceeded the dry fluxes. Based on the dry deposition model, the indirectly calculated dry deposition velocities of aluminum, iron, manganese, cobalt, zinc, selenium, lead, cadmium and chromium were 1.29 ± 1.60、1.27 ± 1.66、2.33 ± 1.48、1.67 ± 0.94、1.98 ± 2.22、0.51 ± 0.29、0.12 ± 0.13、0.15 ± 0.12、0.17 ± 0.10 cm·s-1, respectively, with apparent seasonal variations. The contributions from the crust to most of atmospheric trace elements can be neglected except aluminum and iron. The air-masses came from the northwest direction have relatively high concentrations of dissolved trace elements with higher frequency of occurrence. Thus, it had the greatest effects on the concentrations and wet deposition of atmospheric trace elements in the Jiaozhou Bay. The theoretical magnitude of biological fixation of nitrogen supported by the dissolved iron in atmospheric deposition were 94.9×108 g N·yr-1, which accounted for 4.9% ~100% of the total biological fixation of nitrogen in the Jiaozhou Bay.
4) Compared to riverine inputs, point source pollution and mariculture, the loadings of atmospheric depositions of nutrients and trace elements accounted for relatively low percentages, but it has increased greatly relative to previous results, indicating the status of atmospheric deposition has enhanced in recent years. The water exchange between the South Yellow Sea and Jiaozhou Bay were the main sources of DOP and chromium in the Jiaozhou Bay. Jiaozhou Bay seawater were the “sink” of most of nutrients and trace elements but Zn. Due to the relatively high N:P ratio of the reserved nutrients in the seawater of Jiaozhou Bay, the phosphorus limitation may be maintained for a long time. Quantization of the influxes /effluxes and sources / sinks of nutrients and trace elements are meaningful for assessing the eutrophication and environmental evolution trend of Jiaozhou Bay.
The percentages of atmospheric deposition of nutrients in the total external loadings of Jiaozhou Bay has increased in the recent years. For individual trace elements, such as zinc, atmospheric deposition loading accounted for relatively high percentage, suggesting atmospheric deposition is an important source for trace elements. In addition, its contribution has increased in recent years with the enhancing of anthropogenic activities. Through one year’s water exchange, the reserved DIN, DIP and DSi that could be assimilated by phytoplankton were 193×109 mol, 2.04×109 mol and 106×109 mol with a N:P ratio of ~100 and a Si:N ratio of ~0.5. Thus, we concluded that under the premise that there is no major environmental change, the phosphorus limitation of Jiaozhou Bay would maintain for a long time, but the condition that silicon limitation may be alleviated.
This study systematically analyzed atmospheric dry and wet depositions of nutrients and trace elements and their sources and ecological effects on Jiaozhou Bay ecosystem. Through this study, we reinforced the understanding of biogeochemical cycle processes of nutrient elements in the Jiaozhou Bay. In addition, this study provided essential data and theoretical foundation for further study on the responses and mechanisms of semi-enclosed bay to the growing anthropogenic activities.
学科领域海洋科学其他学科
语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/136576
专题海洋生态与环境科学重点实验室
作者单位中国科学院海洋研究所
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
邢建伟. 人类活动影响下胶州湾的大气干湿沉降与营养物质收支[D]. 北京. 中国科学院大学,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
邢建伟-人类活动影响下胶州湾的大气干湿沉(6709KB)学位论文 限制开放ODC PDDL浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[邢建伟]的文章
百度学术
百度学术中相似的文章
[邢建伟]的文章
必应学术
必应学术中相似的文章
[邢建伟]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 邢建伟-人类活动影响下胶州湾的大气干湿沉降与营养物质收支-博士学位论文.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。