IOCAS-IR  > 海洋生态与环境科学重点实验室
Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200
Zhang, Sheng-Da1,3,4; Santini, Claire-Lise2,3,4; Zhang, Wei-Jia1,3,4; Barbe, Valerie5; Mangenot, Sophie5; Guyomar, Charlotte2,3,4; Garel, Marc6; Chen, Hai-Tao1,3,4; Li, Xue-Gong1,3,4; Yin, Qun-Jian1,3,4; Zhao, Yuan7; Armengaud, Jean8; Gaillard, Jean-Charles8; Martini, Severine6; Pradel, Nathalie6; Vidaud, Claude8; Alberto, Francois2,3,4; Medigue, Claudine9,10,11; Tamburini, Christian6; Wu, Long-Fei2,3,4
2016-05-01
Source PublicationEXTREMOPHILES
Volume20Issue:3Pages:301-310
SubtypeArticle
AbstractBacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.
KeywordDeep-sea Adaptation Bioluminescence Tmao Reductase Hydrostatic Pressure Anaerobic Respiration
DOI10.1007/s00792-016-0822-1
Indexed BySCI
Language英语
WOS IDWOS:000374832100007
Citation statistics
Document Type期刊论文
Version出版稿
Identifierhttp://ir.qdio.ac.cn/handle/337002/131042
Collection海洋生态与环境科学重点实验室
Affiliation1.Chinese Acad Sci, Sanya Inst Deep Sea Sci & Engn, Dept Deep Sea Sci, Deep Sea Microbial Cell Biol, Sanya, Peoples R China
2.Aix Marseille Univ, CNRS, IMM, LCB UMR 7257, 31 Chem Joseph Aiguier, F-13402 Marseille 20, France
3.LCB CNRS, France China Biomineralizat & Nanostruct Lab, LIA BioMNSL, Marseille, France
4.Chinese Acad Sci, SIDSSE, Sanya, Peoples R China
5.CEA, DSV IG Genoscope LF, Evry, France
6.Univ Sud Toulon Var, Aix Marseille Univ, CNRS INSU, IRD,MIO,UM110, F-13288 Marseille, France
7.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China
8.CEA, DSV, IBEB, SBTN, Bagnols Sur Ceze, France
9.CEA, DSV IG Genoscope, Lab Analyse Bioinformat Genom & Metab, Evry, France
10.CNRS, UMR 8030, Evry, France
11.Univ Evry Val Esssone, Evry, France
Recommended Citation
GB/T 7714
Zhang, Sheng-Da,Santini, Claire-Lise,Zhang, Wei-Jia,et al. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200[J]. EXTREMOPHILES,2016,20(3):301-310.
APA Zhang, Sheng-Da.,Santini, Claire-Lise.,Zhang, Wei-Jia.,Barbe, Valerie.,Mangenot, Sophie.,...&Wu, Long-Fei.(2016).Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.EXTREMOPHILES,20(3),301-310.
MLA Zhang, Sheng-Da,et al."Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200".EXTREMOPHILES 20.3(2016):301-310.
Files in This Item:
File Name/Size DocType Version Access License
Genomic and physiolo(1290KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zhang, Sheng-Da]'s Articles
[Santini, Claire-Lise]'s Articles
[Zhang, Wei-Jia]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhang, Sheng-Da]'s Articles
[Santini, Claire-Lise]'s Articles
[Zhang, Wei-Jia]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhang, Sheng-Da]'s Articles
[Santini, Claire-Lise]'s Articles
[Zhang, Wei-Jia]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.